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Numerous studies over the past two decades have 
found clear evidence that vibrant communities are 
inextricably linked with opportunities for active 
and/or non-motorized transportation. Indeed, 
pedestrian and bicycling facilities, when purposively 
linked with mixed land uses and public transit, can 
become critical components of safe, healthy and 
enjoyable places. 

A synergetic force working within the broader 
movement of active transportation is the emergence, 
widespread diffusion and expansion of public bicycle 
sharing systems (BSS). Such systems—which make 
bicycles available to the general public on an as-
needed basis—have undergone several refinements 
over the past five decades and, in recent years, have 
dramatically changed the ecology of urban and, 
increasingly, suburban transport. 

This four-part study summarizes general aspects of 
bikeshare planning and explores various social, 
spatial and temporal dimensions of Chicago’s Divvy 
bikeshare system, specifically. The report is organized 
as follows: 

SECTION I briefly traces the evolution of public 
bikesharing and summarizes how the practice of 
planning bikeshare systems has changed over time. 

SECTION II characterizes the three phases of 
Chicago’s Divvy system beginning with its initial 
rollout in 2013 through its first and second 
expansions, in 2015 and 2016, respectively, paying 
special attention to service and performance gaps. 

SECTION III develops a series of statistical models 
designed to identify factors that best explain 
variations in Divvy system usage at the station level. 

SECTION IV discusses recent and proposed changes to 
Chicago’s Divvy system and concludes with potential 
implications for bikeshare planning, more generally.  

I. EVOLUTION OF PUBLIC BIKESHARE 
SYSTEMS AND PLANNING 

DEVELOPMENT OF US BIKESHARE SYSTEMS 

Later-generation public bicycle sharing systems 
(BSS)—which provide users short-term access to 
bicycles via automated docking stations or on-bike 
interfaces—are increasingly seen as an innovative 
way to advance active transportation and facilitate 
intermodal connections in urban and, increasingly, 
suburban areas. 

The popularity of bicycle sharing is most clearly 
evidenced by the quickening pace of BSS investments 
by cities, non-profits and private entities throughout 
Europe, Asia and, more recently, North America. A 
2016 assessment estimates that there are over one 
thousand public use bicycle sharing systems globally; 
supplying a combined 2.2 billion bicycles. And while 
over one third of these programs are located in 
China, the number of systems in Europe (524) and 
North America (121) is growing steadily (1). 

Late-comers to BSS, US cities began to build out their 
modern bikeshare infrastructure in the early 2010s. 
The three largest systems—Citi Bike in New York City 
(with 12,000 bicycles), Divvy in Chicago (6,000 
bicycles) and Capital Bikeshare in Washington DC 
(3,700 bicycles)—began service in May 2013, June 
2013 and May 2010, respectively and have expanded 
considerably over time (Figure 1). Data from the 
National Association of City Transportation Officials 
(NATO) estimates that US cities logged over 88 
million trips since 2010 and added 24 public 
bikeshare systems between 2015 and 2016 alone (2).  

One explanation for the rapid adoption and diffusion 
of BSS is that contemporary programs have largely 
overcome many of the technical challenges that 
constrained widespread use of earlier-generation 
systems. Contemporary bikeshare programs are 
characterized by: improved methods of 
(re)distribution (or rebalancing bikes to meet diurnal 
variations in supply and demand); ease of installation 
(e.g., use of solar on station kiosks no longer require 
expensive and time-consuming underground 
electrical wiring);  better bicycle design (e.g., stations
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Figure 1. Largest US Bikeshare Systems and Expansions as of January, 2018 

 

and bicycles have secure locking mechanisms); 
smartcard and credit card usage which eliminates 
anonymity and reduces vandalism; ease of customer 
use via automated payment and checkout systems as 
well as mobile apps that make it easy to identify 
bicycle and station location and bicycle availability in 
real time; and creative business models (e.g., many 
BSS are public-private partnerships that leverage 
short-term federal capital investments with longer-
term investments by local governments and 
nonprofit entities) that allow for the implementation 
of a wide range of system types and purposes (3, 4). 
Emerging technological advancements in bikeshare 
include integration of electronic bikes, dockless 
systems and improved integration with public 
transport via inter-agency/modal transit cards (5). 

In addition to the above technological and supply-
side improvements, BSS have also been bolstered by 
demand-side trends including demographic shifts and 
preferences in the US population that favor 
(re)urbanization, active transportation (within both 
urban and suburban settings as well as across socio-
demographic groups) and an overall willingness to 
participate in sharing economies connected via 
mobile technologies (6–11). 

EVOLUTION OF BIKESHARE PLANNING 

The initial rollout of BSS in the US relied only 
marginally on conventional models of transportation 
planning in part because planners lacked the 
necessary information to adequately forecast 
demand for this new mode of transport (e.g., bicycle 
counts and surveys). As a result, planners were 
compelled to swiftly familiarize themselves with the 
technology of BSS, negotiate suitable business 
models with stakeholders and investors, identify 
optimal system sizes and scopes and, when planning 
for dock-based systems, determine—oftentimes with 
considerable input from the broader community—
locations for bikesharing stations that would best 
serve stakeholders and leverage the existing 
transportation network (12). 

Some cities followed a more conservative and 
measured approach toward system implementation; 
opting to delay development to allow time for 
feasibility analyses and more extensive periods of 
public input (e.g., Philadelphia, Portland and Los 
Angeles). Other cities forged ahead quickly, adopting 
a higher-risk, “fail-fast” approach typical of 
technology start-ups (13). In some cases, the latter 
approach led to some failures such as the Orange 
County Transit Authority’s Fullerton and Seattle’s 
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Pronto systems. Nonetheless, the initial surge of BSS 
adoption in US cities over the past eight years has 
also dramatically elevated the visibility and role of 
active transportation in urban areas within a 
relatively short period of time. 

Concurrent with and in response to this rapid 
expansion of and interest in BSS was the drafting of 
technical guides and tools to assist cities with the 
strategic planning of public bikeshare systems. One of 
the earliest such reports, Bike Sharing in the United 
States by the Toole Design Group (TDG) and 
Pedestrian and Bicycle Information Center (PBIC), 
proposed steps that jurisdictions could take to plan, 
implement and sustain a bikeshare program. The 
guide surveyed and documented bikeshare business 
models, infrastructure considerations and funding 
options and shared specific performance metrics 
useful for monitoring and evaluating system success 
(14). 

In the following year, the Institute for Transportation 
and Development Policy (ITDP) published a global 
evaluation of BSS to show how cities of different 
sizes, densities, and degrees of development had 
structured bikeshare systems. And while the 
document argues that there exists no single model 
for bikeshare implementation—rather cities must, 
ultimately, develop a system that is especially 
adapted to their own local context—it does identify 
key characteristics of more successful programs, 
including the provision of a dense station network, 
fully automated locking system, real-time monitoring 
of station occupancy rates and pricing structures that 
incentivize short trips (4). 

A Mineta Transportation Institute report surveyed 
bikeshare operators, users and other stakeholders to 
better understand not only the status and 
characteristics of bikesharing operations in North 
America, but also the variety of impacts it was having 
on walking, bicycling and public transit. Study results 
were used to formulate a number of 
recommendations for enhancing bikeshare systems 
including improving the balance of stations between 
downtown and residential neighborhoods, building 
stronger partnerships between users, sponsors and 
local government and determining in advance the 
number of users and rides a system can support (15). 

As bikeshare operational frameworks became more 
intricate, planning documents became more focused 
in their scope. For example, the National Association 
of City Transportation Official’s (NACTO), Bike Share 
Siting Guide, emphasized the importance of site 
location planning in program success, highlighting 
best practices in station placement and design and 
how bikeshare stations can be leveraged to enhance 
walkability and broaden the reach of transit in urban 
settings (16). 

SHIFT TOWARD EQUITY IN BIKESHARE 
PROGRAMMING 

Early on in the development of bikeshare across the 
US, it became clear that system facilities were not 
adequately integrated into lower-income 
communities. Such criticisms mirrored transportation 
injustices—both past and present—that have 
burdened lower-income communities while 
simultaneously advantaging middle to higher-income 
neighborhoods (17, 18). 

Recent studies have shown that most investments in 
alternative transportation and active living plans and 
programs—including bikeshare—have largely 
benefitted middle- and upper-class communities 
despite the fact that low-income, Black, and Latino 
communities tend to experience: (1) lower rates of 
mobility/accessibility; (2) higher rates of obesity and 
related health risks; and (3) higher rates of 
pedestrian- and bicycle-related fatalities (19–21). 
Additionally, while diverse communities are 
embracing non-motorized transportation, advocates 
and planners became increasingly concerned that 
traditionally underserved populations were again 
being marginalized or unable to share in the full 
benefits of existing and future bicycle and pedestrian-
oriented planning efforts.  

These concerns led to a growing number of studies 
and advocacy efforts aimed at identifying and 
removing barriers to bikeshare in traditionally 
underserved areas. Recent research has found that 
the root causes of social inequality in bikeshare are 
multifold. First, communities of color often lack 
geographic access to bikeshare facilities due to a 
scarcity of stations and bikes being located there. 
One nationwide study of 35 large BSS programs 
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found that more than three quarters (1,556 or 2,063 
or 75.4 percent) of bikesharing stations across the US 
were located in communities with lower economic 
hardship whereas only 245 (or 11.9 percent) stations 
were located in communities with higher economic 
hardship (22). 

Critics also pointed out that a lack of functional 
access to modern bikeshare systems may also 
constrain usage among lower-income groups, such as 
the use of credit-card based pricing and payment 
systems which restrict access to those without bank 
accounts (i.e., the “unbanked”). A series of reports by 
Portland State University, for example, concluded 
that high costs of membership, concerns about 
liability for the bicycle, incorrect knowledge about 
how to use bikeshare and a general lack of awareness 
of reduced-price memberships created a 
disproportionate number of barriers among lower-
income respondents compared to their higher-
income counterparts (23). More promising, however, 
is that the researchers found that bikeshare owners 
and operators have responded to these disparities by 
formally adopting equity into their planning 
processes. The study found that over half (57%) of US 
bikeshare systems now consider equity in their 
promotion, outreach, and marketing which is up from 
around 40 percent reported a few years ago (8). In 
recent years, cities have also taken steps to broaden 
bikeshare ridership among younger and older age 
groups, females and individuals with varying physical 
and cognitive abilities in addition to extending 
services to more suburban areas located outside the 
urban core. 

II. DIVVY GROWTH AND EXPANSION 

The Divvy bikeshare system, located in the City of 
Chicago and two adjacent suburbs, officially launched 
in June 2013 and—with over 11 million logged rides 
and 3 million trip hours through July 2017—it is one 
of the largest and most successful bikeshare systems 
in the country. 

Similar to other large programs across the United 
States, most of the system’s $18 million startup 
capital costs were acquired via the Congestion 
Mitigation and Air Quality (CMAQ) federal grant 
program, with the understanding that the bikeshare 

system would improve Chicago’s transportation 
performance in multiple ways. Drawing from 
performance characteristics of similar systems 
implemented prior to Divvy (e.g., Montreal, 
Washington DC and New York), it was expected that 
Chicago’s new bikeshare system would replace short 
automobile trips with bike trips, improve access to 
transit, and replace shorter transit trips, thereby 
simultaneously reducing private vehicle miles 
traveled and relieving pressure on congested roads 
and transit lines. The new bikeshare system also 
aligned with many of the regional transportation 
goals specified in the Chicago Metropolitan Agency 
for Planning (CMAP) GOTO 2040 plan (the Chicago 
region’s metropolitan planning organization) which 
aimed to, among other objectives, increase cycling 
participation and better link “transit, housing and 
energy use through livable communities” (24). 

The remainder of this section briefly characterizes 
three phases of Chicago’s Divvy system beginning 
with its initial rollout in 2013 through its first and 
second expansions, in 2015 and 2016, respectively. 
Because Divvy is a docked system, we pay special 
attention to variations in the placement of bicycle 
stations over time as well as service and performance 
gaps across communities and sociodemographic 
groups. 

To analyze Divvy’s growth and expansion, we use 
both trip and station data that were made available 
via the Divvy website. The bikeshare data includes 

the date, time and frequency of trips as well as 
each trip’s origin and destination station. Station 
data includes the geographic coordinates and 
capacity of Divvy docks as well as the date that 
each station was made operational. By merging the 
trips and stations datasets, we were able to create a 
comprehensive data table containing the origin (i.e., 
location of station where bike was rented), 
destination (i.e., location of station where bike was 
returned), date, duration and user type (i.e., 
subscriber vs. non-subscriber of customer) for each 
Divvy trip taken over a four-year period, June 2013 
through June 2017 (N=11,544,688). A binary gender 
category (male or female) and birth year was also 
provided for 71.8 percent of the total trips, 
essentially those trips attributed to Divvy members. 



  

5 

 

 

In addition to the information provided by Divvy, 
each trip in the comprehensive table was attributed 
with additional contextual location information 
including the respective community area and study 
period or cohort associated with each origin and 
destination location and station. The three, distinct 
study periods (and respective date ranges) are 
organized with respect to the date when the specific 
station was made operational, namely: the initial 
rollout (6/1/2013-3/28/2015), first expansion 
(4/1/2015-6/30/2016) and second expansion 
(7/1/2016-6/30/2017). Figure 2 shows the cumulative 
trips and stations for each study period, whereas 
Figure 3 shows cumulative trips together with 
monthly Divvy trip totals taken between June 1, 2013 
and June 30, 2017. Key characteristics of the 
geographic distributions and performances of Divvy 
stations collectively and for each study period are 
summarized below. 

INITIAL ROLLOUT (JUNE 2013 – MARCH 2015) 

Divvy officially began operation in June 2013 with the 
siting and activating of 100 stations: The first station 
was installed on June 10 and the first logged trip was 
initiated on June 27 of that year. The system quickly 
grew to 300 stations by October 2013 and, due in 
part to supplier issues, no additional stations were 
added to the system until April 2015. The initial set of 
bikeshare stations spanned across 21 of Chicago’s 77 
community areas, with the greatest station 
concentrations positioned in the Near West Side (41 
stations), Near North (34), West Town (29) 
neighborhoods, the historic Loop (27) and adjacent 
communities to the north, west and south. 
Altogether the service area for the initial rollout (i.e., 
the non-overlapping area within ¼ mile of each 
station) was 31.5 square miles (Table 1). 

Bikeshare site planning decisions for this initial period 
were carried out by the City of Chicago through a 
contracted engineering firm that helped guide the 
overall design of the system as well as the selection 
of specific station locations and dock installation. 
Station locations were informed by numerous types 
of information including a multi-factor suitability 
analysis which was used to estimate both the 
demand potential (informed by population density, 
employment density, share of population 20 to 39 

years of age, percent of bike and walk commute 
share, business concentration, proximity to parks, 
public transit boardings and frequency) and 
locational equity (informed by household income, 
percent non-white population, educational 
attainment) of each location. Community-driven 
station location recommendations were also 
gathered via public meetings and an interactive 
website (25). 

The initial station network was relatively dense, with 
stations positioned at an average quarter mile or 
approximately two city blocks from one another. 
According to the 2015 American Community Survey, 
population density within a ¼ mile of these stations is 
20,761 people per square mile, which is considerably 
greater than the city as a whole (11,923 per square 
mile). The socio-demographics of residents within the 
service area of this initial cohort of stations is also 
predominantly white (mean of 57.8 percent) with 
lower rates of unemployment (mean of 5.1 percent 
of the labor force age 16 years or older) compared to 
service areas that benefitted from later expansions. 
And because most of the bikeshare stations are sited 
near Chicago’s urban core—where public transit train 
and bus lines converge—they are readily accessible to 
transit customers, with the service area overlapping 
84 CTA L and Metra stations and 2,549 CTA and Pace 
bus stops. 
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Figure 2. Cumulative Divvy Trips and Stations by Month and Study Period, June 2013-June 2017 

 

 

Figure 3. Cumulative and Total Divvy Trips by Month, June 2013-June 2017 
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Table 1. Service Area Characteristics by Station Cohort 

 Initial rollout First expansion Second expansion Totalh 

Divvy stations 300 175 107 582 
Service area (mi2)a 31.5 30.6 19.2 74.4 
Station density (mi2) 9.52 5.72 5.57 7.82 
Communitiesb 21 35 24 47 

Population density (mi2) 20,761 18,495 13,298 17,671 
Station distance (mi)c 0.24 0.41 0.46 0.33 
Train stationsd 84 68 39 191 
Bus stopse 2,549 2,260 1,377 6,186 
% Non-whitef 42.2 62.5 76.8 57.8 
% Unemployedg 5.1 6.8 9.8 9.3 
Notes: (a) Combined area of non-overlapping ¼ mile buffers from Divvy stations; (b) Number of communities that either intersect or are 
completely within service area; (c) Average minimum distance to closest Divvy station by service area; (d) Chicago Transit Authority (CTA) 
L train and Metra commuter train stops; (e) CTA and PACE suburban bus stops; (f) ACS, 2011-2015 5-year estimates, nonwhite and non-
Latino; (g) ACS, 2011-2015 5-year estimates, population 16 years of age and older in the labor force; (h) attributes reported under total 
service area reflects data from all three station cohorts with no overlap (i.e., the present characteristics of the system service area at the 
time of this writing). 

 

FIRST EXPANSION (APRIL 2015 to JUNE 2016) 

In April 2015, as part of Divvy’s first substantive 
expansion, 73 stations were added to the bikeshare 
network, with 102 more stations installed over the 
following four months. Nineteen communities—
among them the Near North (additional 11 stations), 
Near West Side (8) and Loop (10)—added stations to 
their existing supply (a total of 93 or 53.1 percent of 
stations went into communities that already had 
stations) while the remaining 82 stations were 
distributed across sixteen new host communities 
scattered along the perimeter of the initial service 
area including the lower-income communities of 
Englewood (4), Humboldt Park (4) and North 
Lawndale (4). 

The size of the first expansion station cohort service 
area is 30.6 square miles—similar in size to the initial 
rollout—although this first expansion service area has 
fewer bus stops and train stations due, in part, to the 
radial design of the region’s train service which 
becomes increasingly dispersed outside the urban 
core. The first expansion cohort stations are also 
positioned further apart from one another compared 
to stations installed as part of the initial rollout (an 
average minimum distance of 0.41 miles versus 0.24 
miles), thus the overall Divvy station network also 
became less concentrated during this period. 

SECOND EXPANSION (JULY 2016 to JUNE 2017) 

The second and latest expansion (at the time of this 
writing) commenced in June 2016 and included the 
addition of 107 stations to the Divvy network. The 
total service area (19.2 square miles), station density 
(5.57 stations per square mile), population density 
(13,298 per square mile) and transit proximity (1,377 
bus stops and 39 train stations) for this second 
expansion were considerably less than past 
installations. Unlike previous expansions, nearly 60 
percent of the stations installed over this period were 
sited in communities that, prior to this expansion, 
had no Divvy presence. Of these, over a third were 
located within lower-income communities, including 
Austin (14), West Englewood (6) and West Garfield 
Park (5). However, the stations installed during this 
second expansion were also more dispersed, with an 
average distance of 0.46 miles, double that of 
stations installed during the initial rollout. 

Perhaps most unique to this period from a policy 
perspective, is that 23 new stations were added to 
the suburban communities of Oak Park and Evanston, 
which are adjacent to the western and northern 
boundaries of the city of Chicago, respectively. The 
expansion was made possible via a $3 million 
investment by the State of Illinois Department of 
Transportation (IDOT) distributed through its 
competitive and federally-funded Transportation 
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Enhancement Program (ITEP), which aims to provide 
funds for community-based projects that both 
expands travel choices for users and enhances the 
environmental aspects of transportation 
infrastructure. As part of the grant distribution 
process, inter-agency agreements were arranged 
between Chicago and the suburban communities, 
each of which paid 20 percent of the total grant 
amount received; $120,000 in local match by Oak 
Park and $80,000 by Evanston. 
 
Figure 4. Divvy Stations by Study Period

 
 
While the inter-agency agreements included rigid 
requirements with respect to several aspects of the 
system including advertising, pricing, revenue-sharing 
and operation, the process for siting bikeshare 
stations was carried out independently by each 

suburb. The Village of Oak Park, for example, 
contracted with a regional nonprofit transportation 
advocacy group to develop a bicycle and bike share 
feasibility plan that also included guidance for the 
station site selection process (Village of Oak Park 
2015). The station siting methodology for Oak Park 
resembled the strategy carried out by the City of 
Chicago for its initial rollout of Divvy. That is, the 
study utilized responses to community surveys as 
well as results from a demand model that weighted a 
variety of variables, such as population density, 
employment density, rail transit stations, and other 
demographic characteristics to determine optimal 
conditions within the village to locate bikeshare 
stations. The bikeshare feasibility study identified 13 
sites for placing the first phase of implementation, to 
be placed in areas that received both higher bike 
share scores and locations that contributed to a 
denser network within the system coverage area. 
 
In contrast, the City of Evanston used information 
from a wide variety of information sources—e.g., 
including Northwestern University students’ capstone 
projects, online survey data collected as part of the 
city’s bike plan update, and other factors such as 
proximity to transit, access to retail spaces, proximity 
to retail spaces, popular public venues, major 
employers and population density—to evaluate 
options for locating the initial eight bike share 
stations. Both suburbs largely assumed that their 
initial community-specific rollouts of Divvy stations 
would be just one of several future expansions. 

SERVICE AND PERFORMANCE GAPS 

Surely the Divvy system has greatly increased 
mobility through bicycle access among both Chicago’s 
residents as well as short-term visitors and tourists. 
Despite these gains in geographic access, however, 
over forty percent of the city’s community areas (i.e., 
32 of the 77) still do not, at the time of this writing, 
host a Divvy station. And, for those communities that 
do have Divvy bicycles within their boundaries, 
functional access to the system and system usage—
such as the average number of trips per station—can 
vary greatly, as mentioned above. This section 
explores variations in both geographic access and 
system usage across the study area and within the 
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Divvy network. 

The comprehensive Divvy dataset discussed up to this  
point represents trips taken over a four-year period 
beginning June 2013 through June 2017. However, to 
compare usage across stations, we consider only the 
3,677,088 trips taken over the approximately one-
year period, 6/1/2016 through 6/31/2017, when all 
582 present stations were active. Performance 
characteristics for this period (Table 2) indicate major 
differences in Divvy system utilization (in terms of 
trips and trip times) across the three station cohorts. 
Most notable is that the average number of trips per 
station is considerably greater for stations installed 
during the initial rollout (10,161) compared to 
stations activated later in the first and second 
expansions (3,285; and 503 trips per station, 
respectively). 

In 2013, soon after the initial outlay of stations in 
Chicago, criticisms arose concerning the lack of Divvy 
bikesharing stations in communities on the South and 

West sides of the city. Figure 4 shows that over two-
thirds of the 300 stations installed between June and 
October 2013 were concentrated in six communities 
in the north and central areas of the city, led by the 
Near West Side (41), Lincoln Park (36), Lake View 
(34), Near North Side (34), West Town (29) and the 
Loop (27). 

We developed an economic hardship index to further 
examine both the distribution and utilization or 
performance of stations across neighborhoods. The 
index is composed of six variables drawn from the 
2015 American Community Survey 5-year estimates, 
namely: percent overcrowded; percent unemployed; 
percent with less than high school diploma; percent 
dependent population; percent spending more than 
30 percent of income on housing; and percent with 
no health insurance. The six variables were gathered 
at the census block group level before aggregating to  

 

 
Table 2. Performance Characteristics by Station Cohort 
(Trips taken between June 2016 to July 2017) 

 Initial rollout First expansion Second expansion Total 

Stations 300 175 107 582 
Divvy trips (000s) 3,048.4 574.9 53.8 3,677.1 
% of Divvy trips 82.9% 15.6% 1.5% 100.0% 
Average trips per station 10,161 3,285 503 6,318 
Trip hours (000s) 817.4 166.9 16.2 1,000 
Minutes per trip 16.1 17.4 18.1 16.3 
Male to Female 3.0 2.9 2.9 3.0 

 
Figure 5. Proportion of Divvy Stations by Economic Hardship Category and Study Period 

Initial rollout First expansion Second expansion 
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Table 3. Number, Percent and Performance of Stations by Station Cohort and Economic Hardship Category 
(Trips taken between June 2016 and July 2017) 

 Initial rollout First expansion Second expansion 
 Stations (%) Trips [000s] (%) Stations (%) Trips [000s] (%) Stations (%) Trips [000s] (%) 

Lowest 160 (27.5%) 2,089 (56.8%) 42 (7.2%) 376 (10.2%) 24 (4.1%) 35 (1%) 
Low 108 (18.6%) 901 (24.5%) 35 (6%) 124 (3.4%) 2 (0.3%) 1 (0%) 
Moderate 13 (2.2%) 16 (0.4%) 46 (7.9%) 51 (1.4%) 27 (4.6%) 12 (0.3%) 
High 4 (0.7%) 9 (0.2%) 26 (4.5%) 14 (0.4%) 19 (3.3%) 4 (0.1%) 
Highest 15 (2.6%) 32 (0.9%) 26 (4.5%) 9 (0.3%) 35 (6%) 2 (0.1%) 

Total 300 (51.5%) 3,048 (82.9%) 175 (30.1%) 575 (15.6%) 107 (18.4%) 54 (1.5%) 
 
 
Figure 6. Distribution of Divvy Stations by Study 
Period and Neighborhood Area 

 

 

Figure 7. Distribution of Divvy Stations by Economic 
Hardship Category 
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community areas using a spatial areal weighting 
procedure. Each of the community area-level 
variables were then independently ranked by Z score 
value and combined via an additive procedure to 
create the index. Finally, the index values were then 
categorized into quintiles representing varying levels 
of economic hardship, with the “highest” index 
category indicating worse economic conditions. 
Figure 5 maps the number of distribution of Divvy 
stations by economic hardship category, clearly 
showing disproportionate concentrations of stations 
within community areas with relatively low levels of 
hardship, although the distributions have trended 
toward becoming more equitable over time. 
 
Table 4 shows not only that Divvy system utilization is 
considerably lower for stations activated in the first 
and second expansions, as stated earlier, but that the 
productivity of stations is also lower in communities 
with greater economic hardship. For example, the 
21.5 percent of total Divvy stations located within 
communities with higher economic hardship 
produced only 1.9 percent of logged trips within the 
study period (i.e., June 2016 and July 2017). The 
lowest rates of Divvy usage were among stations 
installed during the second expansion within 
communities with higher economic hardship. 
 
In addition to performance disparities across 
economic hardship categories, this study also found 
considerable usage gaps by gender across Chicago 
community areas and nearby suburbs. Many of the 
places outside the urban core, including the suburbs 
of Evanston (3.33) and Oak Park (4.14) reported 
larger gender gaps in system usage–i.e., where the 
ratio of Divvy trips taken by male riders exceeded the 
number of trips taken by female riders—over the 
study period relative to communities on Chicago’s 
north side such as Rogers Park (2.14), Lincoln Park 
(2.19) and Uptown (2.31). Figure 8 below also 
indicates that the gender gap is seasonal in that it 
grows widest in the winter months, narrows in the 
spring and summer before rising again when 
temperatures drop in the fall. Over the past four 
years, however, the gender gap has begun to close 
system wide—dropping from an annual average of 
3.5 in 2013 to 3.1 in 2017—in part due to notable 

gains in female ridership in cooler months over time. 

Figure 4. Male to Female Trips Ratios for Select 
Places (Trips taken between June 2013 and July 
2017) 

 

 
Figure 5. Monthly Male to Female Trips Ratios, June 
2013 to July 2017 

 

 

III. WHAT DRIVES DIVVY RIDERSHIP? 

In this section we develop a series of statistical 
models designed to explain variability in Divvy system 
usage at the station level. This process began with an 
extensive review of academic literature, BSS websites 
and other professional reports that could be used to 
inform the selection of response and predictor 
variables as well as relevant data sources and 
methods.  

Past bikeshare studies can be crudely categorized 
into four types: (1) descriptive studies that inventory 
and report the characteristics of existing systems 
such as their respective locations (typically at the city-
scale), sizes (i.e., number of bicycles and docks) and 
business models (Shaheen et al. 2014; TDG and PBIC 
2012); (2) operations-related analyses which examine 
and, at times, offer solutions to widespread funding, 
public safety and/or logistics challenges (e.g., 
balancing supply and demand across stations, 
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ensuring fiscal sustainability, accommodating and 
improving helmet use) posed by BSS (Fishman, 
Washington, and Haworth 2013; Friedman et al. 
2015; Kraemer, Roffenbender, and Anderko 2012; 
Rainer-Harbach et al. 2013; Siavash Shahsavaripour 
2015); (3) explorations into the factors that influence 
bikeshare utilization (Faghih-Imani et al. 2014, 2014; 
Fishman 2015) that explore determinants of ridership 
patterns and flows; and (4) transportation system 
impacts which examine the impacts (e.g., mode 
shifts, public health and environmental 
improvements) that BSS has on the functioning of the 
broader transportation system and society, more 
generally (Martin and Shaheen 2014). For this 
analysis, we largely draw from findings that fall into 
the third category of studies, those concerned with 
bikeshare utilization or what drives ridership 
throughout and between bikeshare programs 
although the data, analytics and results reported 
below may have broader implications that speak to 
other research domains. 

MODEL DATA AND ANALYTICAL PROCEDURES 

The model data and analytical procedures used in this 
study follow a multi-step process that includes 
determination of a study period, factor 
determination, variable operationalization and model 
specification. Each of these steps is discussed briefly 
below beginning with the determination of an 
appropriate study period. 

For the statistical analyses presented below we use 
the subset of trips taken over the study period when 
all 582 stations were operational; i.e., the 3,677,088 
trips taken between 6/1/2016 and 6/31/2017. This 
period was deemed appropriate to employ in the 
statistical models for two reasons. First, it can 
rationally be assumed that, throughout this period, 
system users were given equal opportunity to ride to 
and from all stations throughout the Divvy network. 
Second, by aggregating trips over an entire year—as 
opposed to weeks or months which is common in 
past studies—the analyses minimize the effects of 
seasonal variations on bikeshare usage and season-
sensitive relationships between response and 
predictor variables, more generally. 

Building on past studies, the present analysis aims to 
better understand variability in station use not only 
with regard to bikeshare trip generation but also trip 
destination. Recent academic studies (and bikeshare 
operators themselves) have found that bicycle 
facilities (e.g., bike lanes, paths and related 
treatments), bikeshare station capacity, land use and 
built environment factors can have differential 
impacts on station departure versus arrival rates 
(Faghih-Imani et al. 2014; Faghih-Imani and Eluru 
2015). The dependent variables for this study, then, 
represent total rentals (by origin location), returns 
(by destination location) and flows (rentals plus 
returns) over the study period. Log transformations 
of the three variables were computed in order to 
adjust for the skewed distributions of station activity 
by higher station values. The log-transformed 
variables were then used as response variables in the 
statistical analyses. 

We identified and employed 32 theoretically-
grounded factors for explaining variability in 
bikeshare usage. These factors can be organized into 
five categories: (1) neighborhood design or 
characteristics of the built environment including 
road networks and housing; (2) accessibility or spatio-
temporal relationships between geographic features 
such as the proximity to and distributions of BSS 
stations, transit stops and jobs; (3) socioeconomic or 
demographic variables relating to population 
composition and economic performance; (4) travel 
behavior including auto ownership and commuting 
patterns of workers; and (5) bikeshare network-
specific factors which relate to bikeshare station 
capacity (e.g., number of station docks) and 
characteristics of Divvy riders (e.g., male, female). 

The operationalization of the above factors into 
suitable variables for regression analysis often 
required further segmentation and/or processing. For 
example, in order to account for both site- and 
neighborhood-level influences, factors were 
aggregated at both the station (i.e., summary of 
characteristics within ¼ mile of each Divvy station) 
and community (i.e., summary of values at each 
station’s host community area or municipality) scales. 
Further, in order to reduce aggregation biases 
resulting from using a single areal unit of analysis, 
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accessibility factors were summarized at multiple 
distances from each station and, in some cases, 
further segmented by type. The rather broad factor 
of public transit, for example, was subdivided into 14 
unique variables that measure different aspects of 
the area’s public transit system and their 
geographical relationships with bikeshare stations. 
These more nuance measurements take into account 
transit type (e.g., bus, city rail and commuter rail), 
scale of aggregation (e.g., transit characteristics 
within ½- and 1-mile of a bikeshare station) and 
summary levels (i.e., counts of stops/stations versus 
nearest closest stop/station per spatial level of 
aggregation).  

Summarizing variable data at the station buffer and 
community scales was less complicated when source 
data were represented as discrete points (e.g., points 
of interest and street intersections). In other cases 
when source data were summarized as regions or 
polygons (e.g., land use, LODES data by census block 
and ACS data by census block group), areal weighting 
procedures were used to allocate variable counts 
proportional to the area of overlap of the target 
community area or station buffer geography. In some 
cases, data were only provided at coarser, 
community-level geographies such as the housing 
composition, foreclosure and sales data made 
available by DePaul University’s Institute of Housing 
Studies. 

Altogether, over 100 unique independent variables 
were developed and employed in the statistical 
analyses (Table 6). While most of the variables 
employed in this research largely replicated those in 
previous studies, others are less commonly used to 
explain variability in bikeshare activity. Measures of 
public transit job accessibility, walkability, economic 
hardship and ethnic/racial diversity, for example, 
were computed because they have shown to be 
important predictors of other urban phenomena 
(e.g., spatial mismatch, non-motorized trip 
generation, quality of life). Such indices were 
employed in the regression analyses in order to test 
their correlations with bikeshare system 
performance. 

Including such a large number of estimators in the 
statistical analyses was thought to be necessary in 

order to identify the strongest and most significant 
predictors of bikeshare activity across unique factor 
groups (e.g., socioeconomic, accessibility, urban 
design) while simultaneously avoiding biases 
associated with omitting relevant variables. However, 
over specifying the models with an abundance of 
independent variables—some of which may be 
collinear and redundant—can lead to other 
specification problems including inflated standard 
errors, sign ambiguity among the regression 
coefficients and lower predictive power for the 
models as a whole. 
 
In order to address these limitations, a multivariate 
adaptive regression splining (MARS) technique was 
used to fit each of the three dependent variables to 
the same set of predictor variables. MARS models can 
be seen as extensions of linear regressions but, unlike 
ordinary least squares regression models, are non-
parametric and are able to automatically control for 
model heteroskedasticity and nonlinear relationships 
between response and predictor variables. Further, 
MARS “prunes” the number of estimators in the 
regression model by evaluating the relative strength 
and predictive efficiency of variable subsets over 
several iterations. The output model resolves with a 
subset of the strongest predictors among all input 
variables. 

Estimates of variable importance in each MARS 
model was carried out using three criteria: (1) the 
number of subsets for which each variable is included 
in model runs, or the number of times each variable 
is included in a relatively efficient model run; (2) the 
residual sum of squares or RSS criterion which 
calculates the decrease in the RSS for each subset of 
variables relative to the previous subset, with 
variables that cause larger net decreases in RSS 
considered more important. Note that, for ease of 
interpretation, the summed decreases are scaled so 
the largest summed decrease is 100. Lastly (3) the 
generalized cross-validation (GCV) criterion is 
essentially the RSS penalized by the effective number 
of model parameters in each subset. This variable 
selection process, therefore, yields a pruned MARS 
model composed of variables weighted by their 
relative importance. All statistical analytical 
procedures—MARS and estimates of variable  
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Table 6. Model Variables, Definitions and Data Sources 

 Description Data source 

   
Dependent variables   
ln(trips_from) Annual Divvy trips by rental (origin) station Divvy 

ln(trips_to) Annual Divvy trips by return (destination) station Divvy 
ln(trips_flow) Annual Divvy rentals + returns (flow) by station Divvy 
   
Independent factors/variables  
Neighborhood design   
streets Street network density (network miles per mi2) TIGER/Line, US Censusa 

bike facilities Bike facilities density (network miles per mi2) Multiple sourcesb 

intersections Intersection density (intersections per mi2) TIGER/Line, US Census 
land use Land use diversity (0 [lowest] – 1 [highest]) Adapted from CMAPc 

walkability Total walkability index (0 [lowest] – 1 [highest]) Adapted from CMAP 
population density Total population (per mi2) ACS 2015, 5-Yeard 

housing density Housing unit density (units per mi2) ACS 2015, 5-Year 

% multi-family Percent multi-family (5 or more) units ACS 2015, 5-Year  

% condo units Percent of housing units, condo DePaul IHSe 

% built < 1950 Percent of housing units built prior to 1950 ACS 2015, 5-Year  

   
Accessibility   
distance to CBD Distance from Divvy station to Chicago city hall Adapted from Divvy  

job accessibility Accessibility to jobs via public transit Multiple sourcesf 

retail jobs Retail job density (per mi2) LODES, 2015g 

higher-income jobs Jobs with earnings > $3,333 per month (per mi2) LODES, 2015 

public transit Number of and distance to stations/stops by type RTAMSh 

points of interest Points of interest density (locations per mi2) Open Street Map 

Divvy stations Proximity to Divvy stations Adapted from Divvy 
   
Socioeconomic   
% dependent population Percent of population <18 or >=65 years of age ACS 2015, 5-Year 
% nonwhite population Percent of total population non-White, not Latino ACS 2015, 5-Year  
racial/ethnic diversity Race and ethnicity diversity ACS 2015, 5-Year 
economic hardship Economic hardship index (0 [lowest] - 1 [highest]) ACS 2015, 5-Year 
foreclosure rate Residential foreclosures per 100 parcels DePaul IHS 

house sales Residential house sales per capita DePaul IHS 
crime density Violent crimes (per mi2) Multiple sourcesi 

   
Travel behavior   
% own vehicle Percent of households that own private vehicle ACS 2015, 5-Year 
% drive alone to work Percent of workers who drive alone to work ACS 2015, 5-Year 
% bike to work Percent of workers who commute by bicycle ACS 2015, 5-Year  
% walk to work Percent of workers who commute by walking ACS 2015, 5-Year 
   
Divvy-specific factors   
station capacity Number of docks at Divvy bikesharestation  
% female trips Percent of Divvy trips by female riders Adapted from Divvy 
male to female trip ratio Male to female Divvy trips ratio Adapted from Divvy 
% subscriber/member trips Percent of Divvy trips by program subscribers Adapted from Divvy 
% trips during peak periods Percent of Divvy trips during peak AM, PM periods Adapted from Divvy 
diurnal trip index Diurnal Divvy trips diversity index Adapted from Divvy 

Notes: (a) Topologically Integrated Geographic , US Census Bureau; (b) City of Chicago; Village of Oak Park; City of Evanston; (c) Chicago 
Metropolitan Agency for Planning; (d) American Community Survey 2011-2015, 5-year estimates; (e) DePaul Institute of Housing Studies; 
(f) LODES, ACS, RTAMS, OpenStreetMap; (g) Longitudinal Origin-Destination Employment Statistics, US Census Bureau; (h) Regional 
Transit Authority Mapping Statistics; (i) City of Chicago; Village of Oak Park; City of Evanston 
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Table 7. Summary Statistics and Bivariate Correlation Coefficients for Select Model Variables 
    from to flow 
Description Variable Name Mean SD Corr Corr Corr 

       
Dependent Variables       
Annual Divvy trips by rental (origin) station s_trips_from 6,307 8,736 1.000 0.995 0.999 
Annual Divvy trips by return (destination) station s_trips_to 6,307 8,880 0.995 1.000 0.999 
Annual Divvy rentals + returns (flow) by station s_trips_flow 12,614 17,596 0.999 0.999 1.00 
       
Independent variables       
Neighborhood Design       
Bike facilities density (network miles per mi2) s_bikelanedensity 3.19 2.50 0.40 0.39 0.39 
Bike facilities density (network miles per mi2) c_bikelanedensity 2.89 1.37 0.55 0.53 0.54 
Percent of housing units, condo c_pctcondores 31.51 23.92 0.62 0.61 0.62 
Percent multi-family (5 or more) units s_pctmultihu 55.27 29.21 0.57 0.56 0.56 
       
Accessibility       
Divvy stations within 1-mile radius s_div1mi 22.95 17.69 0.64 0.62 0.63 
Divvy stations within 1/2 mile radius s_divhalfmi 5.97 5.96 0.61 0.58 0.60 
Points of interest density (locations per mi2) s_poisdens 101.31 84.69 0.57 0.55 0.56 
Points of interest density (locations per mi2) c_poisdens 465.92 491.50 0.55 0.53 0.54 
CTA L stations within 1 mile s_L1mi 5.45 5.79 0.56 0.53 0.55 
Accessibility to jobs via public transit s_jobaccess 936,740 193,736 0.48 0.47 0.47 
Average distance to Divvy stations s_avgdist2div 6.18 1.84 -0.45 -0.44 -0.44 
Average min distance to Divvy stations c_avgmin2div 0.31 0.12 -0.57 -0.56 -0.57 
       
Socioeconomic       
Percent of workers earning >= $3,333/mo s_rac_pcthigh 51.51 19.61 0.56 0.54 0.55 
Percent unemployed s_pctunemp 6.85 4.35 -0.40 -0.40 -0.40 
Residential foreclosures per 100 parcels c_allresper100 0.66 0.62 -0.42 -0.42 -0.42 
Economic hardship index (0 [low] - 1 [high]) s_ehindex 0.69 0.38 -0.48 -0.47 -0.47 
Percent of population non-White, not Latino s_pctpopnonwht 56.16 28.26 -0.51 -0.50 -0.50 
Percent dependent population (<18 or >=65) c_pctdeppop 13.37 3.74 -0.57 -0.55 -0.56 
Percent of workers employed in retail sector s_rac_pctretail 7.88 2.97 -0.59 -0.58 -0.59 
       
Travel behavior       
Percent commute to work by walking s_pctcomwalk 12.69 15.13 0.57 0.55 0.56 
Percent commute to work by walking c_pctcomwalk 11.67 11.33 0.51 0.49 0.50 
Percent of commuters who drove alone c_pctcomdral 40.76 10.15 -0.56 -0.54 -0.55 
Percent of commuters who drove alone s_pctcomdral 39.94 12.72 -0.58 -0.57 -0.58 
       
Divvy-specific factors       
Diurnal Divvy ridership diversity index s_divtrips_nd 79.70 5.56 0.28 0.27 0.28 
Male to female Divvy trip ratio s_mal2femtrips 3.26 2.59 -0.01 -0.02 -0.02 

Total observations (N) = 582; Bivariate correlations in bold are significant at the p<0.1 level. 

 

importance—were carried out using RStudio version 
1.1.183 statistical program together with the evimp 
package. 

Descriptive statistics and bivariate correlations 
between highly correlated explanatory variables (i.e., 
statistically significant correlations with absolute 

values of 0.4 or greater) and each of the three 
response variables are shown in Table 7. The 
correlations suggest that several explanatory 
variables have strong and significant correlations with 
Divvy usage across each of the five variable 
categories. Further, the dependent variables 
themselves have strong positive linear relationships  
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Table 8. Variable Selection Results by MARS Model 
 Highest 

Rank 
ln(trips_from) ln(trips_to) ln(trips_flow) 

Variable Subsets GCV RSS Subsets GCV RSS Subsets GCV RSS 

c_allresper100 15 15 100 100 14 100 100 14 100 100 
s_pctpopnonwht 14 14 56.08 56.54 - - - - - - 
s_pctmultihu 13 13 42.89 43.53 9 33.23 33.84 9 33.30 33.88 
c_pctcondores 12 11 24.30 25.57 12 49.46 49.93 12 49.46 49.92 
s_jobaccess 12 12 31.54 32.51 11 35.09 35.76 11 35.13 35.78 
s_pctcomdral 11 7 12.24 13.95 11 35.09 35.76 11 35.13 35.78 
s_ehindex 9 - - - 9 23.84 24.76 9 23.67 24.58 
s_divtrips_nd 9 9 16.06 17.74 6 13.75 14.95 6 13.43 14.65 
s_mal2femtrips 8 8 14.05 15.75 7 16.74 17.84 7 16.55 17.65 
s_pctunemp 6 6 10.08 11.86 - - - - - - 
c_pctcomwalk 5 - - - 5 11.21 12.47 4 9.53 10.68 
s_avgdist2div 4 4 6.58 8.40 4 9.63 10.79 3 8.10 9.10 

 

 

suggesting substantial correspondence across 
stations with respect to rental and return activity. All 
of the highly correlated explanatory variables have 
the expected signs or theoretical directional 
relationships with the response variables. 

REGRESSION MODEL RESULTS 

Initial MARS results show that variables across each 
of the five categories are represented in the pruned 
model specifications, suggesting that neighborhood 
design, accessibility, socioeconomic and related 
bikeshare characteristics all have considerable 
predictive power in explaining variability in bikeshare 
activity. Rates of foreclosure properties, multifamily 
housing units and condominium units, job 
accessibility and drive alone commute mode share 
were among the five most efficient predictors across 
all three models (Table 8). Percentage of the 
population nonwhite and unemployed were stronger 
predictors for explaining variability in trip generation 
(i.e., Divvy rental activity) whereas economic 
hardship and percent walk commute mode share 
were more strongly correlated with trip destination 
and flow activity. Further, station-level (or 1/4 mile 
distance from station) variables were also selected 
more frequently by the MARS model than the 
variables aggregated at the community or place-level 
(i.e., community areas for stations in Chicago or the 
municipal level for Evanston and Oak Park), 
suggesting that bikeshare activity may be driven 
more by localized patterns than broader, community 
characteristics. 

Various diagnostic characteristics of the MARS 
models are presented in Figure 6. The residuals 
versus fitted graphs (upper section of Figure 6) show 
that the residuals exhibit constant variance across the 
low and high fitted values, suggesting minimal 
presence of heteroscedasticity within all three 
models. Model selection charts (middle section of 
Figure 7) shows the cross-validation statistics for the 
iterative or variable subsets for each MARS model. 
The vertical black dotted line shows the optimal 
number of terms (i.e., variables) determined whereas 
the pale pink lines show the R-squares for each of the 
model runs or “folds”. The cumulative distribution 
charts (bottom section of Figure 7) shows the 
cumulative distributions of the absolute values of the 
residuals for each model. In all models, the graph 
quickly rises to 1 indicating the high explanatory 
power of each term. For all models, the 95 percent of 
the absolute value of residuals are within 3.0 units of 
the observed value. 

As discussed earlier, MARS controls for nonlinearity in 
relationships between response and predictor 
variables. Figure 8 shows that many of the 
explanatory variables do indeed exhibit nonlinear 
relationships that hinge at distinct thresholds. For 
example, when the percentage nonwhite grows to 92 
percent, bikeshare activity drops at a faster rate with 
each unit increase in the predictor. In contrast, the 
effect of multifamily units on bikeshare activity is 
minimal until a threshold value of 20 percent is 
reached and the positive relationship between 
proportion multifamily and system usage becomes 
stronger. Further investigation of these hinges or 
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tipping points for each factor may yield useful 
information for understanding and planning for 
bikeshare programs. 

Table 9 shows coefficient estimates (both 
unstandardized and standardized) for linearized 
variables selected as part of the MARS model runs. 
The coefficients can be used to interpret the 
potential impact of each predictor on each of the 
three types of bikeshare activity. Coefficients must 
first be adjusted to account for the log-transformed 

dependent variable. Standardized coefficients were 
ordered from highest value to lowest value such that 
the strongest predictors are on either end (depending 
on whether the variable has a proportional or inverse 
relationship with the dependent variable) of the 
ordered list by model. Based on this ordering, 
percentage of multi-housing units (0.26) and job 
accessibility (0.18) were the strongest, positively 
correlated predictors of trip generation. For example, 
a one percent increase in the share of multifamily  

Figure 8. MARS Diagnostics and Results by Model 

ln(trips_from) ln(trips_to) ln(trips_flow) 
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Figure 9. MARS Prediction Intervals for Select Explanatory Variables 
ln(trips_from) ln(trips_to) ln(trips_flow) 
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Table 9. Linear Regression Results for Three Divvy Usage Models (from, to, flow) 

Variable Standardized Coefficient Std. Error t value Pr(>|t|) 

ln(trips_from)      
      
(Intercept) 0.00 5.55 0.72 7.68 0.00 
s_pctmultihu 0.26 0.02 1.79E-03 9.92 0.00 
s_jobaccess 0.18 1.84E-06 3.11E-07 5.92 0.00 
s_divtrips_nd 0.08 0.03 0.01 4.27 0.00 
s_bikelanedensity 0.03 0.03 0.01 1.96 0.05 
s_avgdist2div -0.09 -0.10 0.03 -2.94 0.00 
s_pctcomdral -0.09 -0.01 3.45E-03 -4.23 0.00 
s_pctunemp -0.15 -0.07 0.01 -6.32 0.00 
s_pctpopnonwht -0.18 -0.01 1.92E-03 -6.57 0.00 
c_allresper100 -0.22 -0.70 0.09 -7.62 0.00 
s_mal2femtrips     0.54 
c_pctcondores     0.92 
      
Above model: R-squared:  0.87; Adj r-squared:  0.86; F-statistic: 337.907 on 11 and 570 DF, p-value: 0.000 
(Full model: R-squared: 0.93; Adjusted R-squared:  0.92; F-statistic: 66.978 on 100 and 482 DF, p-value: 0.000) 

Variable Standardized Coef Std. Error t value Pr(>|t|) 

ln(trips_to)      
      
(Intercept) 0.00 5.80 0.71 8.13 0.00 
s_pctmultihu 0.26 0.02 1.76E-03 10.02 0.00 
s_jobaccess 0.16 1.66E-06 3.08E-07 5.39 0.00 
s_divtrips_nd 0.08 0.03 0.01 4.50 0.00 
s_bikelanedensity 0.04 0.03 0.01 2.56 0.01 
c_pctcomwalk -0.11 -0.02 4.46E-03 -4.30 0.00 
s_avgdist2div -0.12 -0.13 0.03 -3.83 0.00 
s_pctcomdral -0.13 -0.02 3.49E-03 -5.91 0.00 
s_ehindex -0.24 -0.34 0.03 -11.07 0.00 
c_allresper100 -0.32 -1.02 0.08 -13.51 0.00 
s_mal2femtrips     0.56 
c_pctcondores     0.69 
      
Above model: R-squared: 0.88 ; Adjusted R-squared: 0.88; F-statistic: 351.292 on 11 on 570 DF, p-value: 0.000 
(Full model: R-squared: 0.94; Adjusted R-squared: 0.92; F-statistic: 70.209 on 100 and 482 DF, p-value: 0.000) 

Variable Standardized Coef Std. Error t value Pr(>|t|) 

ln(trips_flow)      
      
(Intercept) 0.00 6.42 0.70 9.11 0.00 
s_pctmultihu 0.26 0.02 1.74E-03 10.21 0.00 
s_jobaccess 0.17 1.69E-06 3.04E-07 5.56 0.00 
s_divtrips_nd 0.08 0.03 0.01 4.61 0.00 
s_bikelanedensity 0.04 0.03 0.01 2.36 0.02 
c_pctcomwalk -0.11 -0.02 4.40E-03 -4.33 0.00 
s_avgdist2div -0.12 -0.13 0.03 -3.88 0.00 
s_pctcomdral -0.14 -0.02 3.45E-03 -6.08 0.00 
s_ehindex -0.24 -0.34 0.03 -11.09 0.00 
c_allresper100 -0.32 -1.00 0.07 -13.48 0.00 
s_mal2femtrips     0.34 
c_pctcondores     0.68 
      
Above model: R-squared: 0.88; Adjusted R-squared: 0.88; F-statistic: 359.024 on 11 and 571 DF, p-value: 0.000 
(Full model: R-squared: 0.94; Adjusted R-squared: 0.92; F-statistic: 69.339 on 100 and 482 DF, p-value: 0.000) 

 



  

20 

 

 

 

housing units is associated with a 1.80 percent 
increase in Divvy rentals and a 10,000 increase in 
total jobs accessible is associated with a 1.84 percent 
increase in rentals. Whereas, a one percent increase 
in the percentage of nonwhite population residing 
within 1/4 mile of a Divvy station is associated with a 
1.3 percent decrease in Divvy rentals from that 
station. The above models also show that the 
network and schedule-based indicators of public 
transit and job accessibility have stronger predictive 
power than more simplistic, proximity- and 
frequency-based indicators. 

IV. CONCLUSION 

The planning and development of bicycle-sharing 
systems continues to grow rapidly around the world, 
within both urban and suburban areas. Because the 
US started rather late in this process, performance 
data of these systems has only recently become 
available, researchers are only beginning to 
understand the factors underlying system usage over 
time. This study contributes to a growing literature 
on bicycle-sharing systems by exploring the spatio-
temporal characteristics of expansion, service gaps as 
well as both local- and community-level factors that 
may influence trip generation, destination decisions 
and overall bikeshare activity flows.  

The current study found that the two major 
expansions of the Divvy system in 2015 and 2016, 
which now extends several miles from the central 
business district including the suburbs of Evanston 
and Oak Park, has fueled gains in the number of users 
and frequency of rides for the system as a whole. 

These expansions have also extended access to the 
Divvy system across select communities with greater 
economic hardship over time, albeit at incrementally 
lower bikeshare station densities. Regression results 
suggest that usage rates are considerably lower 
among lower income communities of color 
suggesting that considerable barriers to bikeshare 
exist across throughout the city and a need to 
continue and expand equity-based programs to 
increase ridership in transportation disadvantaged 
communities.  

Regression model results show that neighborhood 
design, accessibility, socioeconomic and related 
bikeshare characteristics all have considerable 
predictive power in explaining variability in Divvy 
bikeshare activity. The study also found that an 
extensive gender gap exists among Divvy riders, with 
males logging over three times the number of trips as 
females. Therefore, improving ridership throughout 
the system will likely require a transparent, multi-
faceted approach informed by multiple stakeholder 
groups and the systematic tracking and reporting of 
key operations and performance information. 
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