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Numerous studies over the past two decades have
found clear evidence that vibrant communities are
inextricably linked with opportunities for active
and/or non-motorized transportation. Indeed,
pedestrian and bicycling facilities, when purposively
linked with mixed land uses and public transit, can
become critical components of safe, healthy and
enjoyable places.

A synergetic force working within the broader
movement of active transportation is the emergence,
widespread diffusion and expansion of public bicycle
sharing systems (BSS). Such systems—which make
bicycles available to the general public on an as-
needed basis—have undergone several refinements
over the past five decades and, in recent years, have
dramatically changed the ecology of urban and,
increasingly, suburban transport.

This four-part study summarizes general aspects of
bikeshare planning and explores various social,
spatial and temporal dimensions of Chicago’s Divvy
bikeshare system, specifically. The report is organized
as follows:

SECTION | briefly traces the evolution of public
bikesharing and summarizes how the practice of
planning bikeshare systems has changed over time.

SECTION Il characterizes the three phases of
Chicago’s Divvy system beginning with its initial
rollout in 2013 through its first and second
expansions, in 2015 and 2016, respectively, paying
special attention to service and performance gaps.

SECTION 11l develops a series of statistical models
designed to identify factors that best explain
variations in Divvy system usage at the station level.

SECTION IV discusses recent and proposed changes to
Chicago’s Divvy system and concludes with potential
implications for bikeshare planning, more generally.

I. EVOLUTION OF PUBLIC BIKESHARE
SYSTEMS AND PLANNING

DEVELOPMENT OF US BIKESHARE SYSTEMS

Later-generation public bicycle sharing systems
(BSS)—which provide users short-term access to
bicycles via automated docking stations or on-bike
interfaces—are increasingly seen as an innovative
way to advance active transportation and facilitate
intermodal connections in urban and, increasingly,
suburban areas.

The popularity of bicycle sharing is most clearly
evidenced by the quickening pace of BSS investments
by cities, non-profits and private entities throughout
Europe, Asia and, more recently, North America. A
2016 assessment estimates that there are over one
thousand public use bicycle sharing systems globally;
supplying a combined 2.2 billion bicycles. And while
over one third of these programs are located in
China, the number of systems in Europe (524) and
North America (121) is growing steadily (1).

Late-comers to BSS, US cities began to build out their
modern bikeshare infrastructure in the early 2010s.
The three largest systems—Citi Bike in New York City
(with 12,000 bicycles), Divvy in Chicago (6,000
bicycles) and Capital Bikeshare in Washington DC
(3,700 bicycles)—began service in May 2013, June
2013 and May 2010, respectively and have expanded
considerably over time (Figure 1). Data from the
National Association of City Transportation Officials
(NATO) estimates that US cities logged over 88
million trips since 2010 and added 24 public
bikeshare systems between 2015 and 2016 alone (2).

One explanation for the rapid adoption and diffusion
of BSS is that contemporary programs have largely
overcome many of the technical challenges that
constrained widespread use of earlier-generation
systems. Contemporary bikeshare programs are
characterized by: improved methods of
(re)distribution (or rebalancing bikes to meet diurnal
variations in supply and demand); ease of installation
(e.g., use of solar on station kiosks no longer require
expensive and time-consuming underground
electrical wiring); better bicycle design (e.g., stations



Figure 1. Largest US Bikeshare Systems and Expansions as of January, 2018
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and bicycles have secure locking mechanisms);
smartcard and credit card usage which eliminates
anonymity and reduces vandalism; ease of customer
use via automated payment and checkout systems as
well as mobile apps that make it easy to identify
bicycle and station location and bicycle availability in
real time; and creative business models (e.g., many
BSS are public-private partnerships that leverage
short-term federal capital investments with longer-
term investments by local governments and
nonprofit entities) that allow for the implementation
of a wide range of system types and purposes (3, 4).
Emerging technological advancements in bikeshare
include integration of electronic bikes, dockless
systems and improved integration with public
transport via inter-agency/modal transit cards (5).

In addition to the above technological and supply-
side improvements, BSS have also been bolstered by
demand-side trends including demographic shifts and
preferences in the US population that favor
(re)urbanization, active transportation (within both
urban and suburban settings as well as across socio-
demographic groups) and an overall willingness to
participate in sharing economies connected via
mobile technologies (6-11).

Hubway,
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EVOLUTION OF BIKESHARE PLANNING

The initial rollout of BSS in the US relied only
marginally on conventional models of transportation
planning in part because planners lacked the
necessary information to adequately forecast
demand for this new mode of transport (e.g., bicycle
counts and surveys). As a result, planners were
compelled to swiftly familiarize themselves with the
technology of BSS, negotiate suitable business
models with stakeholders and investors, identify
optimal system sizes and scopes and, when planning
for dock-based systems, determine—oftentimes with
considerable input from the broader community—
locations for bikesharing stations that would best
serve stakeholders and leverage the existing
transportation network (12).

Some cities followed a more conservative and
measured approach toward system implementation;
opting to delay development to allow time for
feasibility analyses and more extensive periods of
public input (e.g., Philadelphia, Portland and Los
Angeles). Other cities forged ahead quickly, adopting
a higher-risk, “fail-fast” approach typical of
technology start-ups (13). In some cases, the latter
approach led to some failures such as the Orange
County Transit Authority’s Fullerton and Seattle’s



Pronto systems. Nonetheless, the initial surge of BSS
adoption in US cities over the past eight years has
also dramatically elevated the visibility and role of
active transportation in urban areas within a
relatively short period of time.

Concurrent with and in response to this rapid
expansion of and interest in BSS was the drafting of
technical guides and tools to assist cities with the
strategic planning of public bikeshare systems. One of
the earliest such reports, Bike Sharing in the United
States by the Toole Design Group (TDG) and
Pedestrian and Bicycle Information Center (PBIC),
proposed steps that jurisdictions could take to plan,
implement and sustain a bikeshare program. The
guide surveyed and documented bikeshare business
models, infrastructure considerations and funding
options and shared specific performance metrics
useful for monitoring and evaluating system success
(14).

In the following year, the Institute for Transportation
and Development Policy (ITDP) published a global
evaluation of BSS to show how cities of different
sizes, densities, and degrees of development had
structured bikeshare systems. And while the
document argues that there exists no single model
for bikeshare implementation—rather cities must,
ultimately, develop a system that is especially
adapted to their own local context—it does identify
key characteristics of more successful programs,
including the provision of a dense station network,
fully automated locking system, real-time monitoring
of station occupancy rates and pricing structures that
incentivize short trips (4).

A Mineta Transportation Institute report surveyed
bikeshare operators, users and other stakeholders to
better understand not only the status and
characteristics of bikesharing operations in North
America, but also the variety of impacts it was having
on walking, bicycling and public transit. Study results
were used to formulate a number of
recommendations for enhancing bikeshare systems
including improving the balance of stations between
downtown and residential neighborhoods, building
stronger partnerships between users, sponsors and
local government and determining in advance the
number of users and rides a system can support (15).
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As bikeshare operational frameworks became more
intricate, planning documents became more focused
in their scope. For example, the National Association
of City Transportation Official’s (NACTO), Bike Share
Siting Guide, emphasized the importance of site
location planning in program success, highlighting
best practices in station placement and design and
how bikeshare stations can be leveraged to enhance
walkability and broaden the reach of transit in urban
settings (16).

SHIFT TOWARD EQUITY IN BIKESHARE
PROGRAMMING

Early on in the development of bikeshare across the
US, it became clear that system facilities were not
adequately integrated into lower-income
communities. Such criticisms mirrored transportation
injustices—both past and present—that have
burdened lower-income communities while
simultaneously advantaging middle to higher-income
neighborhoods (17, 18).

Recent studies have shown that most investments in
alternative transportation and active living plans and
programs—including bikeshare—have largely
benefitted middle- and upper-class communities
despite the fact that low-income, Black, and Latino
communities tend to experience: (1) lower rates of
mobility/accessibility; (2) higher rates of obesity and
related health risks; and (3) higher rates of
pedestrian- and bicycle-related fatalities (19-21).
Additionally, while diverse communities are
embracing non-motorized transportation, advocates
and planners became increasingly concerned that
traditionally underserved populations were again
being marginalized or unable to share in the full
benefits of existing and future bicycle and pedestrian-
oriented planning efforts.

These concerns led to a growing number of studies
and advocacy efforts aimed at identifying and
removing barriers to bikeshare in traditionally
underserved areas. Recent research has found that
the root causes of social inequality in bikeshare are
multifold. First, communities of color often lack
geographic access to bikeshare facilities due to a
scarcity of stations and bikes being located there.
One nationwide study of 35 large BSS programs



found that more than three quarters (1,556 or 2,063
or 75.4 percent) of bikesharing stations across the US
were located in communities with lower economic
hardship whereas only 245 (or 11.9 percent) stations
were located in communities with higher economic
hardship (22).

Critics also pointed out that a lack of functional
access to modern bikeshare systems may also
constrain usage among lower-income groups, such as
the use of credit-card based pricing and payment
systems which restrict access to those without bank
accounts (i.e., the “unbanked”). A series of reports by
Portland State University, for example, concluded
that high costs of membership, concerns about
liability for the bicycle, incorrect knowledge about
how to use bikeshare and a general lack of awareness
of reduced-price memberships created a
disproportionate number of barriers among lower-
income respondents compared to their higher-
income counterparts (23). More promising, however,
is that the researchers found that bikeshare owners
and operators have responded to these disparities by
formally adopting equity into their planning
processes. The study found that over half (57%) of US
bikeshare systems now consider equity in their
promotion, outreach, and marketing which is up from
around 40 percent reported a few years ago (8). In
recent years, cities have also taken steps to broaden
bikeshare ridership among younger and older age
groups, females and individuals with varying physical
and cognitive abilities in addition to extending
services to more suburban areas located outside the
urban core.

1. DIVVY GROWTH AND EXPANSION

The Divvy bikeshare system, located in the City of
Chicago and two adjacent suburbs, officially launched
in June 2013 and—with over 11 million logged rides
and 3 million trip hours through July 2017—it is one
of the largest and most successful bikeshare systems
in the country.

Similar to other large programs across the United
States, most of the system’s $18 million startup
capital costs were acquired via the Congestion
Mitigation and Air Quality (CMAQ) federal grant
program, with the understanding that the bikeshare
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system would improve Chicago’s transportation
performance in multiple ways. Drawing from
performance characteristics of similar systems
implemented prior to Divvy (e.g., Montreal,
Washington DC and New York), it was expected that
Chicago’s new bikeshare system would replace short
automobile trips with bike trips, improve access to
transit, and replace shorter transit trips, thereby
simultaneously reducing private vehicle miles
traveled and relieving pressure on congested roads
and transit lines. The new bikeshare system also
aligned with many of the regional transportation
goals specified in the Chicago Metropolitan Agency
for Planning (CMAP) GOTO 2040 plan (the Chicago
region’s metropolitan planning organization) which
aimed to, among other objectives, increase cycling
participation and better link “transit, housing and
energy use through livable communities” (24).

The remainder of this section briefly characterizes
three phases of Chicago’s Divvy system beginning
with its initial rollout in 2013 through its first and
second expansions, in 2015 and 2016, respectively.
Because Divvy is a docked system, we pay special
attention to variations in the placement of bicycle
stations over time as well as service and performance
gaps across communities and sociodemographic
groups.

To analyze Divvy’s growth and expansion, we use
both trip and station data that were made available
via the Divvy website. The bikeshare data includes
the date, time and frequency of trips as well as
each trip’s origin and destination station. Station
data includes the geographic coordinates and
capacity of Divvy docks as well as the date that
each station was made operational. By merging the
trips and stations datasets, we were able to create a
comprehensive data table containing the origin (i.e.,
location of station where bike was rented),
destination (i.e., location of station where bike was
returned), date, duration and user type (i.e.,
subscriber vs. non-subscriber of customer) for each
Divvy trip taken over a four-year period, June 2013
through June 2017 (N=11,544,688). A binary gender
category (male or female) and birth year was also
provided for 71.8 percent of the total trips,
essentially those trips attributed to Divwy members.



In addition to the information provided by Divvy,
each trip in the comprehensive table was attributed
with additional contextual location information
including the respective community area and study
period or cohort associated with each origin and
destination location and station. The three, distinct
study periods (and respective date ranges) are
organized with respect to the date when the specific
station was made operational, namely: the initial
rollout (6/1/2013-3/28/2015), first expansion
(4/1/2015-6/30/2016) and second expansion
(7/1/2016-6/30/2017). Figure 2 shows the cumulative
trips and stations for each study period, whereas
Figure 3 shows cumulative trips together with
monthly Divvy trip totals taken between June 1, 2013
and June 30, 2017. Key characteristics of the
geographic distributions and performances of Divvy
stations collectively and for each study period are
summarized below.

INITIAL ROLLOUT (JUNE 2013 — MARCH 2015)

Divvy officially began operation in June 2013 with the
siting and activating of 100 stations: The first station
was installed on June 10 and the first logged trip was
initiated on June 27 of that year. The system quickly
grew to 300 stations by October 2013 and, due in
part to supplier issues, no additional stations were
added to the system until April 2015. The initial set of
bikeshare stations spanned across 21 of Chicago’s 77
community areas, with the greatest station
concentrations positioned in the Near West Side (41
stations), Near North (34), West Town (29)
neighborhoods, the historic Loop (27) and adjacent
communities to the north, west and south.
Altogether the service area for the initial rollout (i.e.,
the non-overlapping area within % mile of each
station) was 31.5 square miles (Table 1).

Bikeshare site planning decisions for this initial period
were carried out by the City of Chicago through a
contracted engineering firm that helped guide the
overall design of the system as well as the selection
of specific station locations and dock installation.
Station locations were informed by numerous types
of information including a multi-factor suitability
analysis which was used to estimate both the
demand potential (informed by population density,
employment density, share of population 20 to 39
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years of age, percent of bike and walk commute
share, business concentration, proximity to parks,
public transit boardings and frequency) and
locational equity (informed by household income,
percent non-white population, educational
attainment) of each location. Community-driven
station location recommendations were also
gathered via public meetings and an interactive
website (25).

The initial station network was relatively dense, with
stations positioned at an average quarter mile or
approximately two city blocks from one another.
According to the 2015 American Community Survey,
population density within a % mile of these stations is
20,761 people per square mile, which is considerably
greater than the city as a whole (11,923 per square
mile). The socio-demographics of residents within the
service area of this initial cohort of stations is also
predominantly white (mean of 57.8 percent) with
lower rates of unemployment (mean of 5.1 percent
of the labor force age 16 years or older) compared to
service areas that benefitted from later expansions.
And because most of the bikeshare stations are sited
near Chicago’s urban core—where public transit train
and bus lines converge—they are readily accessible to
transit customers, with the service area overlapping
84 CTA L and Metra stations and 2,549 CTA and Pace
bus stops.



Figure 2. Cumulative Divvy Trips and Stations by Month and Study Period, June 2013-June 2017
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Table 1. Service Area Characteristics by Station Cohort

Initial rollout First expansion Second expansion Total"
Divvy stations 300 175 107 582
Service area (mi?)° 31.5 30.6 19.2 74.4
Station density (mi?) 9.52 5.72 5.57 7.82
Communities® 21 35 24 47
Population density (mi?) 20,761 18,495 13,298 17,671
Station distance (mi)° 0.24 0.41 0.46 0.33
Train stations? 84 68 39 191
Bus stops® 2,549 2,260 1,377 6,186
% Non-white’ 42.2 62.5 76.8 57.8
% Unemployed®? 5.1 6.8 9.8 9.3

Notes: (a) Combined area of non-overlapping % mile buffers from Divvy stations; (b) Number of communities that either intersect or are
completely within service area; (c) Average minimum distance to closest Divvy station by service area; (d) Chicago Transit Authority (CTA)
L train and Metra commuter train stops; (e) CTA and PACE suburban bus stops; (f) ACS, 2011-2015 5-year estimates, nonwhite and non-
Latino; (g) ACS, 2011-2015 5-year estimates, population 16 years of age and older in the labor force; (h) attributes reported under total
service area reflects data from all three station cohorts with no overlap (i.e., the present characteristics of the system service area at the

time of this writing).

FIRST EXPANSION (APRIL 2015 to JUNE 2016)

In April 2015, as part of Divvy’s first substantive
expansion, 73 stations were added to the bikeshare
network, with 102 more stations installed over the
following four months. Nineteen communities—
among them the Near North (additional 11 stations),
Near West Side (8) and Loop (10)—added stations to
their existing supply (a total of 93 or 53.1 percent of
stations went into communities that already had
stations) while the remaining 82 stations were
distributed across sixteen new host communities
scattered along the perimeter of the initial service
area including the lower-income communities of
Englewood (4), Humboldt Park (4) and North
Lawndale (4).

The size of the first expansion station cohort service
area is 30.6 square miles—similar in size to the initial
rollout—although this first expansion service area has
fewer bus stops and train stations due, in part, to the
radial design of the region’s train service which
becomes increasingly dispersed outside the urban
core. The first expansion cohort stations are also
positioned further apart from one another compared
to stations installed as part of the initial rollout (an
average minimum distance of 0.41 miles versus 0.24
miles), thus the overall Divvy station network also
became less concentrated during this period.

SECOND EXPANSION (JULY 2016 to JUNE 2017)

The second and latest expansion (at the time of this
writing) commenced in June 2016 and included the
addition of 107 stations to the Divvy network. The
total service area (19.2 square miles), station density
(5.57 stations per square mile), population density
(13,298 per square mile) and transit proximity (1,377
bus stops and 39 train stations) for this second
expansion were considerably less than past
installations. Unlike previous expansions, nearly 60
percent of the stations installed over this period were
sited in communities that, prior to this expansion,
had no Divvy presence. Of these, over a third were
located within lower-income communities, including
Austin (14), West Englewood (6) and West Garfield
Park (5). However, the stations installed during this
second expansion were also more dispersed, with an
average distance of 0.46 miles, double that of
stations installed during the initial rollout.

Perhaps most unique to this period from a policy
perspective, is that 23 new stations were added to
the suburban communities of Oak Park and Evanston,
which are adjacent to the western and northern
boundaries of the city of Chicago, respectively. The
expansion was made possible via a $3 million
investment by the State of lllinois Department of
Transportation (IDOT) distributed through its
competitive and federally-funded Transportation



Enhancement Program (ITEP), which aims to provide
funds for community-based projects that both
expands travel choices for users and enhances the
environmental aspects of transportation
infrastructure. As part of the grant distribution
process, inter-agency agreements were arranged
between Chicago and the suburban communities,
each of which paid 20 percent of the total grant
amount received; $120,000 in local match by Oak
Park and $80,000 by Evanston.

Figure 4. Divvy Stations by Study Period
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While the inter-agency agreements included rigid
requirements with respect to several aspects of the
system including advertising, pricing, revenue-sharing
and operation, the process for siting bikeshare
stations was carried out independently by each
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suburb. The Village of Oak Park, for example,
contracted with a regional nonprofit transportation
advocacy group to develop a bicycle and bike share
feasibility plan that also included guidance for the
station site selection process (Village of Oak Park
2015). The station siting methodology for Oak Park
resembled the strategy carried out by the City of
Chicago for its initial rollout of Divvy. That is, the
study utilized responses to community surveys as
well as results from a demand model that weighted a
variety of variables, such as population density,
employment density, rail transit stations, and other
demographic characteristics to determine optimal
conditions within the village to locate bikeshare
stations. The bikeshare feasibility study identified 13
sites for placing the first phase of implementation, to
be placed in areas that received both higher bike
share scores and locations that contributed to a
denser network within the system coverage area.

In contrast, the City of Evanston used information
from a wide variety of information sources—e.g.,
including Northwestern University students’ capstone
projects, online survey data collected as part of the
city’s bike plan update, and other factors such as
proximity to transit, access to retail spaces, proximity
to retail spaces, popular public venues, major
employers and population density—to evaluate
options for locating the initial eight bike share
stations. Both suburbs largely assumed that their
initial community-specific rollouts of Divvy stations
would be just one of several future expansions.

SERVICE AND PERFORMANCE GAPS

Surely the Divvy system has greatly increased
mobility through bicycle access among both Chicago’s
residents as well as short-term visitors and tourists.
Despite these gains in geographic access, however,
over forty percent of the city’s community areas (i.e.,
32 of the 77) still do not, at the time of this writing,
host a Divvy station. And, for those communities that
do have Divvy bicycles within their boundaries,
functional access to the system and system usage—
such as the average number of trips per station—can
vary greatly, as mentioned above. This section
explores variations in both geographic access and
system usage across the study area and within the



Divvy network.

The comprehensive Divvy dataset discussed up to this
point represents trips taken over a four-year period
beginning June 2013 through June 2017. However, to
compare usage across stations, we consider only the
3,677,088 trips taken over the approximately one-
year period, 6/1/2016 through 6/31/2017, when all
582 present stations were active. Performance
characteristics for this period (Table 2) indicate major
differences in Divvy system utilization (in terms of
trips and trip times) across the three station cohorts.
Most notable is that the average number of trips per
station is considerably greater for stations installed
during the initial rollout (10,161) compared to
stations activated later in the first and second
expansions (3,285; and 503 trips per station,
respectively).

In 2013, soon after the initial outlay of stations in
Chicago, criticisms arose concerning the lack of Divvy
bikesharing stations in communities on the South and

Table 2. Performance Characteristics by Station Cohort
(Trips taken between June 2016 to July 2017)

West sides of the city. Figure 4 shows that over two-
thirds of the 300 stations installed between June and
October 2013 were concentrated in six communities
in the north and central areas of the city, led by the
Near West Side (41), Lincoln Park (36), Lake View
(34), Near North Side (34), West Town (29) and the
Loop (27).

We developed an economic hardship index to further
examine both the distribution and utilization or
performance of stations across neighborhoods. The
index is composed of six variables drawn from the
2015 American Community Survey 5-year estimates,
namely: percent overcrowded; percent unemployed;
percent with less than high school diploma; percent
dependent population; percent spending more than
30 percent of income on housing; and percent with
no health insurance. The six variables were gathered
at the census block group level before aggregating to

Initial rollout First expansion  Second expansion Total
Stations 300 175 107 582
Divvy trips (000s) 3,048.4 574.9 53.8 3,677.1
% of Divvy trips 82.9% 15.6% 1.5% 100.0%
Average trips per station 10,161 3,285 503 6,318
Trip hours (000s) 817.4 166.9 16.2 1,000
Minutes per trip 16.1 17.4 18.1 16.3
Male to Female 3.0 2.9 2.9 3.0

Figure 5. Proportion of Divvy Stations by Economic Hardship Category and Study Period
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Table 3. Number, Percent and Performance of Stations by Station Cohort and Economic Hardship Category

(Trips taken between June 2016 and July 2017)

Initial rollout First expansion Second expansion

Stations (%) Trips [000s] (%) Stations (%) Trips [000s] (%)  Stations (%)  Trips [000s] (%)
Lowest 160 (27.5%) 2,089 (56.8%) 42 (7.2%) 376 (10.2%) 24 (4.1%) 35 (1%)
Low 108 (18.6%) 901 (24.5%) 35 (6%) 124 (3.4%) 2 (0.3%) 1 (0%)
Moderate 13 (2.2%) 16 (0.4%) 46 (7.9%) 51 (1.4%) 27 (4.6%) 12 (0.3%)
High 4 (0.7%) 9 (0.2%) 26 (4.5%) 14 (0.4%) 19 (3.3%) 4(0.1%)
Highest 15 (2.6%) 32 (0.9%) 26 (4.5%) 9 (0.3%) 35 (6%) 2 (0.1%)
Total 300(51.5%) 3,048 (82.9%) 175 (30.1%) 575(15.6%) 107 (18.4%) 54 (1.5%)

Figure 6. Distribution of Divvy Stations by Study

Period and Neighborhood Area

Hardship Category

Figure 7. Distribution of Divvy Stations by Economic
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community areas using a spatial areal weighting
procedure. Each of the community area-level
variables were then independently ranked by Z score
value and combined via an additive procedure to
create the index. Finally, the index values were then
categorized into quintiles representing varying levels
of economic hardship, with the “highest” index
category indicating worse economic conditions.
Figure 5 maps the number of distribution of Divvy
stations by economic hardship category, clearly
showing disproportionate concentrations of stations
within community areas with relatively low levels of
hardship, although the distributions have trended
toward becoming more equitable over time.

Table 4 shows not only that Divvy system utilization is
considerably lower for stations activated in the first
and second expansions, as stated earlier, but that the
productivity of stations is also lower in communities
with greater economic hardship. For example, the
21.5 percent of total Divvy stations located within
communities with higher economic hardship
produced only 1.9 percent of logged trips within the
study period (i.e., June 2016 and July 2017). The
lowest rates of Divvy usage were among stations
installed during the second expansion within
communities with higher economic hardship.

In addition to performance disparities across
economic hardship categories, this study also found
considerable usage gaps by gender across Chicago
community areas and nearby suburbs. Many of the
places outside the urban core, including the suburbs
of Evanston (3.33) and Oak Park (4.14) reported
larger gender gaps in system usage—i.e., where the
ratio of Divvy trips taken by male riders exceeded the
number of trips taken by female riders—over the
study period relative to communities on Chicago’s
north side such as Rogers Park (2.14), Lincoln Park
(2.19) and Uptown (2.31). Figure 8 below also
indicates that the gender gap is seasonal in that it
grows widest in the winter months, narrows in the
spring and summer before rising again when
temperatures drop in the fall. Over the past four
years, however, the gender gap has begun to close
system wide—dropping from an annual average of
3.5in 2013 t0 3.1 in 2017—in part due to notable
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gains in female ridership in cooler months over time.

Figure 4. Male to Female Trips Ratios for Select
Places (Trips taken between June 2013 and July
2017)
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I1l. WHAT DRIVES DIVVY RIDERSHIP?

In this section we develop a series of statistical
models designed to explain variability in Divvy system
usage at the station level. This process began with an
extensive review of academic literature, BSS websites
and other professional reports that could be used to
inform the selection of response and predictor
variables as well as relevant data sources and
methods.

Past bikeshare studies can be crudely categorized

into four types: (1) descriptive studies that inventory
and report the characteristics of existing systems
such as their respective locations (typically at the city-
scale), sizes (i.e., number of bicycles and docks) and
business models (Shaheen et al. 2014; TDG and PBIC
2012); (2) operations-related analyses which examine
and, at times, offer solutions to widespread funding,
public safety and/or logistics challenges (e.g.,
balancing supply and demand across stations,



ensuring fiscal sustainability, accommodating and
improving helmet use) posed by BSS (Fishman,
Washington, and Haworth 2013; Friedman et al.
2015; Kraemer, Roffenbender, and Anderko 2012;
Rainer-Harbach et al. 2013; Siavash Shahsavaripour
2015); (3) explorations into the factors that influence
bikeshare utilization (Faghih-Imani et al. 2014, 2014,
Fishman 2015) that explore determinants of ridership
patterns and flows; and (4) transportation system
impacts which examine the impacts (e.g., mode
shifts, public health and environmental
improvements) that BSS has on the functioning of the
broader transportation system and society, more
generally (Martin and Shaheen 2014). For this
analysis, we largely draw from findings that fall into
the third category of studies, those concerned with
bikeshare utilization or what drives ridership
throughout and between bikeshare programs
although the data, analytics and results reported
below may have broader implications that speak to
other research domains.

MODEL DATA AND ANALYTICAL PROCEDURES

The model data and analytical procedures used in this
study follow a multi-step process that includes
determination of a study period, factor
determination, variable operationalization and model
specification. Each of these steps is discussed briefly
below beginning with the determination of an
appropriate study period.

For the statistical analyses presented below we use
the subset of trips taken over the study period when
all 582 stations were operational; i.e., the 3,677,088
trips taken between 6/1/2016 and 6/31/2017. This
period was deemed appropriate to employ in the
statistical models for two reasons. First, it can
rationally be assumed that, throughout this period,
system users were given equal opportunity to ride to
and from all stations throughout the Divvy network.
Second, by aggregating trips over an entire year—as
opposed to weeks or months which is common in
past studies—the analyses minimize the effects of
seasonal variations on bikeshare usage and season-
sensitive relationships between response and
predictor variables, more generally.
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Building on past studies, the present analysis aims to
better understand variability in station use not only
with regard to bikeshare trip generation but also trip
destination. Recent academic studies (and bikeshare
operators themselves) have found that bicycle
facilities (e.g., bike lanes, paths and related
treatments), bikeshare station capacity, land use and
built environment factors can have differential
impacts on station departure versus arrival rates
(Faghih-Imani et al. 2014; Faghih-Imani and Eluru
2015). The dependent variables for this study, then,
represent total rentals (by origin location), returns
(by destination location) and flows (rentals plus
returns) over the study period. Log transformations
of the three variables were computed in order to
adjust for the skewed distributions of station activity
by higher station values. The log-transformed
variables were then used as response variables in the
statistical analyses.

We identified and employed 32 theoretically-
grounded factors for explaining variability in
bikeshare usage. These factors can be organized into
five categories: (1) neighborhood design or
characteristics of the built environment including
road networks and housing; (2) accessibility or spatio-
temporal relationships between geographic features
such as the proximity to and distributions of BSS
stations, transit stops and jobs; (3) socioeconomic or
demographic variables relating to population
composition and economic performance; (4) travel
behavior including auto ownership and commuting
patterns of workers; and (5) bikeshare network-
specific factors which relate to bikeshare station
capacity (e.g., number of station docks) and
characteristics of Divvy riders (e.g., male, female).

The operationalization of the above factors into
suitable variables for regression analysis often
required further segmentation and/or processing. For
example, in order to account for both site- and
neighborhood-level influences, factors were
aggregated at both the station (i.e., summary of
characteristics within % mile of each Divvy station)
and community (i.e., summary of values at each
station’s host community area or municipality) scales.
Further, in order to reduce aggregation biases
resulting from using a single areal unit of analysis,



accessibility factors were summarized at multiple
distances from each station and, in some cases,
further segmented by type. The rather broad factor
of public transit, for example, was subdivided into 14
unique variables that measure different aspects of
the area’s public transit system and their
geographical relationships with bikeshare stations.
These more nuance measurements take into account
transit type (e.g., bus, city rail and commuter rail),
scale of aggregation (e.g., transit characteristics
within %- and 1-mile of a bikeshare station) and
summary levels (i.e., counts of stops/stations versus
nearest closest stop/station per spatial level of
aggregation).

Summarizing variable data at the station buffer and
community scales was less complicated when source
data were represented as discrete points (e.g., points
of interest and street intersections). In other cases
when source data were summarized as regions or
polygons (e.g., land use, LODES data by census block
and ACS data by census block group), areal weighting
procedures were used to allocate variable counts
proportional to the area of overlap of the target
community area or station buffer geography. In some
cases, data were only provided at coarser,
community-level geographies such as the housing
composition, foreclosure and sales data made
available by DePaul University’s Institute of Housing
Studies.

Altogether, over 100 unique independent variables
were developed and employed in the statistical
analyses (Table 6). While most of the variables
employed in this research largely replicated those in
previous studies, others are less commonly used to
explain variability in bikeshare activity. Measures of
public transit job accessibility, walkability, economic
hardship and ethnic/racial diversity, for example,
were computed because they have shown to be
important predictors of other urban phenomena
(e.g., spatial mismatch, non-motorized trip
generation, quality of life). Such indices were
employed in the regression analyses in order to test
their correlations with bikeshare system
performance.

Including such a large number of estimators in the
statistical analyses was thought to be necessary in
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order to identify the strongest and most significant
predictors of bikeshare activity across unique factor
groups (e.g., socioeconomic, accessibility, urban
design) while simultaneously avoiding biases
associated with omitting relevant variables. However,
over specifying the models with an abundance of
independent variables—some of which may be
collinear and redundant—can lead to other
specification problems including inflated standard
errors, sign ambiguity among the regression
coefficients and lower predictive power for the
models as a whole.

In order to address these limitations, a multivariate
adaptive regression splining (MARS) technique was
used to fit each of the three dependent variables to
the same set of predictor variables. MARS models can
be seen as extensions of linear regressions but, unlike
ordinary least squares regression models, are non-
parametric and are able to automatically control for
model heteroskedasticity and nonlinear relationships
between response and predictor variables. Further,
MARS “prunes” the number of estimators in the
regression model by evaluating the relative strength
and predictive efficiency of variable subsets over
several iterations. The output model resolves with a
subset of the strongest predictors among all input
variables.

Estimates of variable importance in each MARS
model was carried out using three criteria: (1) the
number of subsets for which each variable is included
in model runs, or the number of times each variable
is included in a relatively efficient model run; (2) the
residual sum of squares or RSS criterion which
calculates the decrease in the RSS for each subset of
variables relative to the previous subset, with
variables that cause larger net decreases in RSS
considered more important. Note that, for ease of
interpretation, the summed decreases are scaled so
the largest summed decrease is 100. Lastly (3) the
generalized cross-validation (GCV) criterion is
essentially the RSS penalized by the effective number
of model parameters in each subset. This variable
selection process, therefore, yields a pruned MARS
model composed of variables weighted by their
relative importance. All statistical analytical
procedures—MARS and estimates of variable



Table 6. Model Variables, Definitions and Data Sources

Description

Data source

Dependent variables
In(trips_from)
In(trips_to)
In(trips_flow)

Independent factors/variables

Neighborhood design
streets

bike facilities
intersections

land use
walkability
population density
housing density

% multi-family

% condo units

% built < 1950

Accessibility
distance to CBD

job accessibility
retail jobs
higher-income jobs
public transit
points of interest
Divvy stations

Socioeconomic

% dependent population
% nonwhite population
racial/ethnic diversity
economic hardship
foreclosure rate

house sales

crime density

Travel behavior

% own vehicle

% drive alone to work
% bike to work

% walk to work

Divvy-specific factors
station capacity

% female trips

male to female trip ratio

% subscriber/member trips
% trips during peak periods
diurnal trip index

Annual Divvy trips by rental (origin) station
Annual Divvy trips by return (destination) station
Annual Divvy rentals + returns (flow) by station

Street network density (network miles per mi?2)
Bike facilities density (network miles per mi?)
Intersection density (intersections per mi2)
Land use diversity (0 [lowest] — 1 [highest])
Total walkability index (0 [lowest] — 1 [highest])
Total population (per mi?)

Housing unit density (units per mi?)

Percent multi-family (5 or more) units

Percent of housing units, condo

Percent of housing units built prior to 1950

Distance from Divvy station to Chicago city hall
Accessibility to jobs via public transit

Retail job density (per mi?)

Jobs with earnings > $3,333 per month (per mi2)
Number of and distance to stations/stops by type
Points of interest density (locations per mi2)
Proximity to Divvy stations

Percent of population <18 or >=65 years of age
Percent of total population non-White, not Latino
Race and ethnicity diversity

Economic hardship index (0 [lowest] - 1 [highest])
Residential foreclosures per 100 parcels
Residential house sales per capita

Violent crimes (per mi?)

Percent of households that own private vehicle
Percent of workers who drive alone to work
Percent of workers who commute by bicycle
Percent of workers who commute by walking

Number of docks at Divvy bikesharestation
Percent of Divvy trips by female riders

Male to female Divvy trips ratio

Percent of Divvy trips by program subscribers
Percent of Divvy trips during peak AM, PM periods
Diurnal Divvy trips diversity index

Divvy
Divvy
Divvy

TIGER/Line, US Census?
Multiple sources?
TIGER/Line, US Census
Adapted from CMAP¢
Adapted from CMAP
ACS 2015, 5-Yeard

ACS 2015, 5-Year

ACS 2015, 5-Year
DePaul IHS®

ACS 2015, 5-Year

Adapted from Divvy
Multiple sourcesf
LODES, 20158
LODES, 2015
RTAMSh

Open Street Map
Adapted from Divvy

ACS 2015, 5-Year
ACS 2015, 5-Year
ACS 2015, 5-Year
ACS 2015, 5-Year
DePaul IHS

DePaul IHS

Multiple sources!

ACS 2015, 5-Year
ACS 2015, 5-Year
ACS 2015, 5-Year
ACS 2015, 5-Year

Adapted from Divvy
Adapted from Divvy
Adapted from Divvy
Adapted from Divvy
Adapted from Divvy

Notes: (a) Topologically Integrated Geographic, US Census Bureau; (b) City of Chicago; Village of Oak Park; City of Evanston; (c) Chicago
Metropolitan Agency for Planning; (d) American Community Survey 2011-2015, 5-year estimates; (e) DePaul Institute of Housing Studies;
(f) LODES, ACS, RTAMS, OpenStreetMap; (g) Longitudinal Origin-Destination Employment Statistics, US Census Bureau; (h) Regional
Transit Authority Mapping Statistics; (i) City of Chicago; Village of Oak Park; City of Evanston
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Table 7. Summary Statistics and Bivariate Correlation Coefficients for Select Model Variables

from to flow
Description Variable Name Mean SD Corr Corr Corr
Dependent Variables
Annual Divvy trips by rental (origin) station s_trips_from 6,307 8,736 1.000 0.995 0.999
Annual Divvy trips by return (destination) station s_trips_to 6,307 8,880 0.995 1.000 0.999
Annual Divvy rentals + returns (flow) by station s_trips_flow 12,614 17,596 0.999  0.999 1.00
Independent variables
Neighborhood Design
Bike facilities density (network miles per mi2) s_bikelanedensity 3.19 2.50 0.40 0.39 0.39
Bike facilities density (network miles per mi2) c_bikelanedensity 2.89 1.37 0.55 0.53 0.54
Percent of housing units, condo c_pctcondores 31.51 23.92 0.62 0.61 0.62
Percent multi-family (5 or more) units s_pctmultihu 55.27 29.21 0.57 0.56 0.56
Accessibility
Divvy stations within 1-mile radius s_divimi 22.95 17.69 0.64 0.62 0.63
Divvy stations within 1/2 mile radius s_divhalfmi 5.97 5.96 0.61 0.58 0.60
Points of interest density (locations per mi?) s_poisdens 101.31 84.69 0.57 0.55 0.56
Points of interest density (locations per mi?) c_poisdens 465.92 491.50 0.55 0.53 0.54
CTA L stations within 1 mile s_L1mi 5.45 5.79 0.56 0.53 0.55
Accessibility to jobs via public transit s_jobaccess 936,740 193,736 0.48 0.47 0.47
Average distance to Divvy stations s_avgdist2div 6.18 1.84 -0.45 -0.44 -0.44
Average min distance to Divvy stations c_avgmin2div 0.31 0.12 -0.57 -0.56 -0.57
Socioeconomic
Percent of workers earning >= $3,333/mo s_rac_pcthigh 51.51 19.61 0.56 0.54 0.55
Percent unemployed s_pctunemp 6.85 4.35 -0.40 -0.40 -0.40
Residential foreclosures per 100 parcels c_allresper100 0.66 0.62 -0.42 -0.42 -0.42
Economic hardship index (0 [low] - 1 [high]) s_ehindex 0.69 0.38 -0.48 -0.47 -0.47
Percent of population non-White, not Latino s_pctpopnonwht 56.16 28.26 -0.51 -0.50 -0.50
Percent dependent population (<18 or >=65) c_pctdeppop 13.37 3.74 -0.57 -0.55 -0.56
Percent of workers employed in retail sector s_rac_pctretail 7.88 2.97 -0.59 -0.58 -0.59
Travel behavior
Percent commute to work by walking s_pctcomwalk 12.69 15.13 0.57 0.55 0.56
Percent commute to work by walking c_pctcomwalk 11.67 11.33 0.51 0.49 0.50
Percent of commuters who drove alone c_pctcomdral 40.76 10.15 -0.56 -0.54 -0.55
Percent of commuters who drove alone s_pctcomdral 39.94 12.72 -0.58 -0.57 -0.58
Divvy-specific factors
Diurnal Divvy ridership diversity index s_divtrips_nd 79.70 5.56 0.28 0.27 0.28
Male to female Divvy trip ratio s_mal2femtrips 3.26 2.59 -0.01 -0.02 -0.02

Total observations (N) = 582; Bivariate correlations in bold are significant at the p<0.1 level.

importance—were carried out using RStudio version
1.1.183 statistical program together with the evimp
package.

Descriptive statistics and bivariate correlations
between highly correlated explanatory variables (i.e.,
statistically significant correlations with absolute
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values of 0.4 or greater) and each of the three
response variables are shown in Table 7. The
correlations suggest that several explanatory
variables have strong and significant correlations with
Divvy usage across each of the five variable
categories. Further, the dependent variables
themselves have strong positive linear relationships



Table 8. Variable Selection Results by MARS Model

Highest In(trips_from) In(trips_to) In(trips_flow)

Variable Rank Subsets GCV RSS Subsets GCV RSS Subsets GCV RSS

c_allresper100 15 15 100 100 14 100 100 14 100 100
s_pctpopnonwht 14 14  56.08 56.54 - - - - - -
s_pctmultihu 13 13 42.89 43.53 9 3323 3384 9 3330 33.88
c_pctcondores 12 11 24.30 25.57 12 49.46 49.93 12 49.46 49.92
s_jobaccess 12 12 31.54 32.51 11 35.09 35.76 11 35.13 35.78
s_pctcomdral 11 7 12.24 13.95 11 35.09 35.76 11 35.13 35.78
s_ehindex 9 - - - 9 23.84 2476 9 23.67 24.58
s_divtrips_nd 9 9 16.06 17.74 6 13.75 14.95 6 13.43 14.65
s_mal2femtrips 8 8 14.05 15.75 7 16.74 17.84 7 16.55 17.65
s_pctunemp 6 6 10.08 11.86 - - - - -
c_pctcomwalk 5 - - - 5 11.21 12.47 4 9.53 10.68
s_avgdist2div 4 4 6.58 8.40 4 9.63 10.79 3 8.10 9.10

suggesting substantial correspondence across
stations with respect to rental and return activity. All
of the highly correlated explanatory variables have
the expected signs or theoretical directional
relationships with the response variables.

REGRESSION MODEL RESULTS

Initial MARS results show that variables across each
of the five categories are represented in the pruned
model specifications, suggesting that neighborhood
design, accessibility, socioeconomic and related
bikeshare characteristics all have considerable
predictive power in explaining variability in bikeshare
activity. Rates of foreclosure properties, multifamily
housing units and condominium units, job
accessibility and drive alone commute mode share
were among the five most efficient predictors across
all three models (Table 8). Percentage of the
population nonwhite and unemployed were stronger
predictors for explaining variability in trip generation
(i.e., Divvy rental activity) whereas economic
hardship and percent walk commute mode share
were more strongly correlated with trip destination
and flow activity. Further, station-level (or 1/4 mile
distance from station) variables were also selected
more frequently by the MARS model than the
variables aggregated at the community or place-level
(i.e., community areas for stations in Chicago or the
municipal level for Evanston and Oak Park),
suggesting that bikeshare activity may be driven
more by localized patterns than broader, community
characteristics.
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Various diagnostic characteristics of the MARS
models are presented in Figure 6. The residuals
versus fitted graphs (upper section of Figure 6) show
that the residuals exhibit constant variance across the
low and high fitted values, suggesting minimal
presence of heteroscedasticity within all three
models. Model selection charts (middle section of
Figure 7) shows the cross-validation statistics for the
iterative or variable subsets for each MARS model.
The vertical black dotted line shows the optimal
number of terms (i.e., variables) determined whereas
the pale pink lines show the R-squares for each of the
model runs or “folds”. The cumulative distribution
charts (bottom section of Figure 7) shows the
cumulative distributions of the absolute values of the
residuals for each model. In all models, the graph
quickly rises to 1 indicating the high explanatory
power of each term. For all models, the 95 percent of
the absolute value of residuals are within 3.0 units of
the observed value.

As discussed earlier, MARS controls for nonlinearity in
relationships between response and predictor
variables. Figure 8 shows that many of the
explanatory variables do indeed exhibit nonlinear
relationships that hinge at distinct thresholds. For
example, when the percentage nonwhite grows to 92
percent, bikeshare activity drops at a faster rate with
each unit increase in the predictor. In contrast, the
effect of multifamily units on bikeshare activity is
minimal until a threshold value of 20 percent is
reached and the positive relationship between
proportion multifamily and system usage becomes
stronger. Further investigation of these hinges or



tipping points for each factor may yield useful dependent variable. Standardized coefficients were
information for understanding and planning for ordered from highest value to lowest value such that
bikeshare programs. the strongest predictors are on either end (depending
on whether the variable has a proportional or inverse
relationship with the dependent variable) of the
ordered list by model. Based on this ordering,
percentage of multi-housing units (0.26) and job
accessibility (0.18) were the strongest, positively
correlated predictors of trip generation. For example,
a one percent increase in the share of multifamily

Table 9 shows coefficient estimates (both
unstandardized and standardized) for linearized
variables selected as part of the MARS model runs.
The coefficients can be used to interpret the
potential impact of each predictor on each of the
three types of bikeshare activity. Coefficients must
first be adjusted to account for the log-transformed

Figure 8. MARS Diagnostics and Results by Model
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Figure 9. MARS Prediction Intervals for Select Explanatory Variables
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Table 9. Linear Regression Results for Three Divvy Usage Models (from, to, flow)

Variable Standardized Coefficient Std. Error t value Pr(>|t])
In(trips_from)

(Intercept) 0.00 5.55 0.72 7.68 0.00
s_pctmultihu 0.26 0.02 1.79E-03 9.92 0.00
s_jobaccess 0.18 1.84E-06 3.11E-07 5.92 0.00
s_divtrips_nd 0.08 0.03 0.01 4.27 0.00
s_bikelanedensity 0.03 0.03 0.01 1.96 0.05
s_avgdist2div -0.09 -0.10 0.03 -2.94 0.00
s_pctcomdral -0.09 -0.01 3.45E-03 -4.23 0.00
s_pctunemp -0.15 -0.07 0.01 -6.32 0.00
s_pctpopnonwht -0.18 -0.01 1.92E-03 -6.57 0.00
c_allresper100 -0.22 -0.70 0.09 -7.62 0.00
s_mal2femtrips 0.54
c_pctcondores 0.92
Above model: R-squared: 0.87; Adj r-squared: 0.86; F-statistic: 337.907 on 11 and 570 DF, p-value: 0.000

(Full model: R-squared: 0.93; Adjusted R-squared: 0.92; F-statistic: 66.978 on 100 and 482 DF, p-value: 0.000)

Variable Standardized Coef Std. Error t value Pr(>|t])
In(trips_to)

(Intercept) 0.00 5.80 0.71 8.13 0.00
s_pctmultihu 0.26 0.02 1.76E-03 10.02 0.00
s_jobaccess 0.16 1.66E-06 3.08E-07 5.39 0.00
s_divtrips_nd 0.08 0.03 0.01 4.50 0.00
s_bikelanedensity 0.04 0.03 0.01 2.56 0.01
c_pctcomwalk -0.11 -0.02 4.46E-03 -4.30 0.00
s_avgdist2div -0.12 -0.13 0.03 -3.83 0.00
s_pctcomdral -0.13 -0.02 3.49E-03 -5.91 0.00
s_ehindex -0.24 -0.34 0.03 -11.07 0.00
c_allresper100 -0.32 -1.02 0.08 -13.51 0.00
s_mal2femtrips 0.56
c_pctcondores 0.69
Above model: R-squared: 0.88 ; Adjusted R-squared: 0.88; F-statistic: 351.292 on 11 on 570 DF, p-value: 0.000

(Full model: R-squared: 0.94; Adjusted R-squared: 0.92; F-statistic: 70.209 on 100 and 482 DF, p-value: 0.000)

Variable Standardized Coef Std. Error t value Pr(>|t])
In(trips_flow)

(Intercept) 0.00 6.42 0.70 9.11 0.00
s_pctmultihu 0.26 0.02 1.74E-03 10.21 0.00
s_jobaccess 0.17 1.69E-06 3.04E-07 5.56 0.00
s_divtrips_nd 0.08 0.03 0.01 4.61 0.00
s_bikelanedensity 0.04 0.03 0.01 2.36 0.02
c_pctcomwalk -0.11 -0.02 4.40E-03 -4.33 0.00
s_avgdist2div -0.12 -0.13 0.03 -3.88 0.00
s_pctcomdral -0.14 -0.02 3.45E-03 -6.08 0.00
s_ehindex -0.24 -0.34 0.03 -11.09 0.00
c_allresper100 -0.32 -1.00 0.07 -13.48 0.00
s_mal2femtrips 0.34
c_pctcondores 0.68

Above model: R-squared: 0.88; Adjusted R-squared: 0.88; F-statistic: 359.024 on 11 and 571 DF, p-value: 0.000
(Full model: R-squared: 0.94; Adjusted R-squared: 0.92; F-statistic: 69.339 on 100 and 482 DF, p-value: 0.000)
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housing units is associated with a 1.80 percent
increase in Divvy rentals and a 10,000 increase in
total jobs accessible is associated with a 1.84 percent
increase in rentals. Whereas, a one percent increase
in the percentage of nonwhite population residing
within 1/4 mile of a Divvy station is associated with a
1.3 percent decrease in Divvy rentals from that
station. The above models also show that the
network and schedule-based indicators of public
transit and job accessibility have stronger predictive
power than more simplistic, proximity- and
frequency-based indicators.

IV. CONCLUSION

The planning and development of bicycle-sharing
systems continues to grow rapidly around the world,
within both urban and suburban areas. Because the
US started rather late in this process, performance
data of these systems has only recently become
available, researchers are only beginning to
understand the factors underlying system usage over
time. This study contributes to a growing literature
on bicycle-sharing systems by exploring the spatio-
temporal characteristics of expansion, service gaps as
well as both local- and community-level factors that
may influence trip generation, destination decisions
and overall bikeshare activity flows.

The current study found that the two major
expansions of the Divvy system in 2015 and 2016,
which now extends several miles from the central
business district including the suburbs of Evanston
and Oak Park, has fueled gains in the number of users
and frequency of rides for the system as a whole.
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These expansions have also extended access to the
Divvy system across select communities with greater
economic hardship over time, albeit at incrementally
lower bikeshare station densities. Regression results
suggest that usage rates are considerably lower
among lower income communities of color
suggesting that considerable barriers to bikeshare
exist across throughout the city and a need to
continue and expand equity-based programs to
increase ridership in transportation disadvantaged
communities.

Regression model results show that neighborhood
design, accessibility, socioeconomic and related
bikeshare characteristics all have considerable
predictive power in explaining variability in Divvy
bikeshare activity. The study also found that an
extensive gender gap exists among Divvy riders, with
males logging over three times the number of trips as
females. Therefore, improving ridership throughout
the system will likely require a transparent, multi-
faceted approach informed by multiple stakeholder
groups and the systematic tracking and reporting of
key operations and performance information.
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